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Problem 1 

(a) Show that a nonpolyhedral closed convex cone need not be retractive, by using as an example 
the cone C = {(u, v, w) �(u, v)� ≤ w}, the recession direction d = (1, 0, 1), and the corresponding 
asymptotic sequence {(k, 

| √
k, 
√
k2 + k)}. (This is the, so-called, second order cone, which plays an 

important role in conic programming; see Chapter 5.) 
(b) Verify that the cone C of part (a) can be written as the intersection of an infinite number of 
closed halfspaces, thereby showing that a nested set sequence obtained by intersection of an infinite 
number of retractive nested set sequences need not be retractive. 

Problem 2 

Let C be a nonempty convex set in Rn, and let M be a nonempty affine set in Rn . Show that 
M ∩rin(C) = ∅ is a necessary and sufficient condition for the existence of a hyperplane H containing 
M , and such that rin(C) is contained in one of the open halfspaces associated with H. 

Problem 3 

Let C1 and C2 be nonempty convex subsets of Rn, and let B denote the unit ball in Rn , B = {x |
�x� ≤ 1}. A hyperplane H is said to separate strongly C1 and C2 if there exists an � > 0 such that 
C1 + �B is contained in one of the open halfspaces associated with H and C2 + �B is contained in 
the other. Show that: 
(a) The following three conditions are equivalent. 

(i) There exists a hyperplane separating strongly C1 and C2. 
(ii) There exists a vector α ∈ Rn such that infx∈C1 α

�x > supx∈C2 
α�x. 

(iii) infx1∈C1, x2∈C2 �x1 − x2� > 0, i.e., 0 ∈/ cl(C2 − C1). 
(b) If C1 and C2 are disjoint, any one of the five conditions for strict separation, given in Prop. 
1.5.3, implies that C1 and C2 can be strongly separated. 
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Problem 4 

We say that a function f : Rn �→ (−∞, ∞] is quasiconvex if all its level sets 

Vγ = {x | f(x) ≤ γ} 

are convex. Let X be a convex subset of Rn, let f be a quasiconvex function such that X∩dom(f) =�
∅, and denote f∗ = infx∈X f(x). 

(a) Assume that f is not constant on any line segment of X, i.e., we do not have f(x) = c for 
some scalar c and all x in the line segment connecting any two distinct points of X. Show that 
every local minimum of f over X is also global. 

(b) Assume that X is closed, and f is closed and proper. Let Γ be the set of all γ > f∗, and 
denote 

Rf = ∩γ∈ΓRγ , Lf = ∩γ∈ΓLγ , 

where Rγ and Lγ are the recession cone and the lineality space of Vγ , respectively. Use the line of 
proof of Prop. 3.2.4 to show that f attains a minimum over X if any one of the following conditions 
holds: 

(1) RX ∩ Rf = LX ∩ Lf . 
(2) RX ∩ Rf ⊂ Lf , and X is a polyhedral set. 

Problem 5 

Let F : Rn+m �→ (−∞, ∞] be a closed proper convex function of two vectors x ∈ Rn and z ∈ Rm , 
and let � � 

X = x inf F (x, z) < ∞ .| 
z∈Rm 

Assume that the function F (x, ) is closed for each x ∈ X. Show that: ·
(a) If for some x̄ ∈ X, the minimum of F (x̄, ) over Rm is attained at a nonempty and compact ·

set, the same is true for all x ∈ X. 
(b) If the functions F (x, ) are differentiable for all x ∈ X, they have the same asymptotic slopes ·

along all directions, i.e., for each d ∈ Rm, the value of limα→∞ �zF (x, z + αd)�d is the same for all 
x ∈ X and z ∈ Rm . 
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