6.253: Convex Analysis and Optimization Homework 3

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

Problem 1

(a) Show that a nonpolyhedral closed convex cone need not be retractive, by using as an example the cone $C=\{(u, v, w) \mid\|(u, v)\| \leq w\}$, the recession direction $d=(1,0,1)$, and the corresponding asymptotic sequence $\left\{\left(k, \sqrt{k}, \sqrt{k^{2}+k}\right)\right\}$. (This is the, so-called, second order cone, which plays an important role in conic programming; see Chapter 5.)
(b) Verify that the cone C of part (a) can be written as the intersection of an infinite number of closed halfspaces, thereby showing that a nested set sequence obtained by intersection of an infinite number of retractive nested set sequences need not be retractive.

Problem 2

Let C be a nonempty convex set in \mathbf{R}^{n}, and let M be a nonempty affine set in \mathbf{R}^{n}. Show that $M \cap \operatorname{rin}(C)=\emptyset$ is a necessary and sufficient condition for the existence of a hyperplane H containing M, and such that $\operatorname{rin}(C)$ is contained in one of the open halfspaces associated with H.

Problem 3

Let C_{1} and C_{2} be nonempty convex subsets of \mathbf{R}^{n}, and let B denote the unit ball in $\mathbf{R}^{n}, B=\{x \mid$ $\|x\| \leq 1\}$. A hyperplane H is said to separate strongly C_{1} and C_{2} if there exists an $\epsilon>0$ such that $C_{1}+\epsilon B$ is contained in one of the open halfspaces associated with H and $C_{2}+\epsilon B$ is contained in the other. Show that:
(a) The following three conditions are equivalent.
(i) There exists a hyperplane separating strongly C_{1} and C_{2}.
(ii) There exists a vector $\alpha \in \mathbf{R}^{n}$ such that $\inf _{x \in C_{1}} \alpha^{\prime} x>\sup _{x \in C_{2}} \alpha^{\prime} x$.
(iii) $\inf _{x_{1} \in C_{1}, x_{2} \in C_{2}}\left\|x_{1}-x_{2}\right\|>0$, i.e., $0 \notin \operatorname{cl}\left(C_{2}-C_{1}\right)$.
(b) If C_{1} and C_{2} are disjoint, any one of the five conditions for strict separation, given in Prop. 1.5.3, implies that C_{1} and C_{2} can be strongly separated.

Problem 4

We say that a function $f: \mathbf{R}^{n} \mapsto(-\infty, \infty]$ is quasiconvex if all its level sets

$$
V_{\gamma}=\{x \mid f(x) \leq \gamma\}
$$

are convex. Let X be a convex subset of \mathbf{R}^{n}, let f be a quasiconvex function such that $X \cap \operatorname{dom}(f) \neq$ \emptyset, and denote $f^{*}=\inf _{x \in X} f(x)$.
(a) Assume that f is not constant on any line segment of X, i.e., we do not have $f(x)=c$ for some scalar c and all x in the line segment connecting any two distinct points of X. Show that every local minimum of f over X is also global.
(b) Assume that X is closed, and f is closed and proper. Let Γ be the set of all $\gamma>f^{*}$, and denote

$$
R_{f}=\cap_{\gamma \in \Gamma} R_{\gamma}, \quad L_{f}=\cap_{\gamma \in \Gamma} L_{\gamma},
$$

where R_{γ} and L_{γ} are the recession cone and the lineality space of V_{γ}, respectively. Use the line of proof of Prop. 3.2.4 to show that f attains a minimum over X if any one of the following conditions holds:
(1) $R_{X} \cap R_{f}=L_{X} \cap L_{f}$.
(2) $R_{X} \cap R_{f} \subset L_{f}$, and X is a polyhedral set.

Problem 5

Let $F: \mathbf{R}^{n+m} \mapsto(-\infty, \infty]$ be a closed proper convex function of two vectors $x \in \mathbf{R}^{n}$ and $z \in \mathbf{R}^{m}$, and let

$$
X=\left\{x \mid \inf _{z \in \mathbf{R}^{m}} F(x, z)<\infty\right\} .
$$

Assume that the function $F(x, \cdot)$ is closed for each $x \in X$. Show that:
(a) If for some $\bar{x} \in X$, the minimum of $F(\bar{x}, \cdot)$ over \mathbf{R}^{m} is attained at a nonempty and compact set, the same is true for all $x \in X$.
(b) If the functions $F(x, \cdot)$ are differentiable for all $x \in X$, they have the same asymptotic slopes along all directions, i.e., for each $d \in \mathbf{R}^{m}$, the value of $\lim _{\alpha \rightarrow \infty} \nabla_{z} F(x, z+\alpha d)^{\prime} d$ is the same for all $x \in X$ and $z \in \mathbf{R}^{m}$.

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

