6.253: Convex Analysis and Optimization Homework 3

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

Problem 1

(a) Show that a nonpolyhedral closed convex cone need not be retractive, by using as an example the cone $C=\{(u, v, w) \mid\|(u, v)\| \leq w\}$, the recession direction $d=(1,0,1)$, and the corresponding asymptotic sequence $\left\{\left(k, \sqrt{k}, \sqrt{k^{2}+k}\right)\right\}$. (This is the, so-called, second order cone, which plays an important role in conic programming; see Chapter 5.)
(b) Verify that the cone C of part (a) can be written as the intersection of an infinite number of closed halfspaces, thereby showing that a nested set sequence obtained by intersection of an infinite number of retractive nested set sequences need not be retractive.

Solution.

(a) Clearly, $d=(1,0,1)$ is the recession direction associated with the asymptotic sequence $\left\{x_{k}\right\}$, where $x_{k}=\left(k, \sqrt{k}, \sqrt{k^{2}+k}\right)$. On the other hand, it can be verified by straightforward calculation that the vector

$$
x_{k}-d=\left(k-1, \sqrt{k}, \sqrt{k^{2}+k}-1\right)
$$

does not belong to C. Indeed, denoting

$$
u_{k}=k-1, \quad v_{k}=\sqrt{k}, \quad w_{k}=\sqrt{k^{2}+k}-1
$$

we have

$$
\left\|\left(u_{k}, v_{k}\right)\right\|^{2}=(k-1)^{2}+k=k^{2}-k+1
$$

while

$$
w_{k}^{2}=\left(\sqrt{k^{2}+k}-1\right)^{2}=k^{2}+k+1-2 \sqrt{k^{2}+k}
$$

and it can be seen that

$$
\left\|\left(u_{k}, v_{k}\right)\right\|^{2}>w_{k}^{2}, \quad \forall k \geq 1
$$

(b) Since by the Schwarz inequality, we have

$$
\max _{\|(x, y)\|=1}(u x+v y)=\|(u, v)\|
$$

it follows that the cone

$$
C=\{(u, v, w) \mid\|(u, v)\| \leq w\}
$$

can be written as

$$
C=\cap_{\|(x, y)\|=1}\{(u, v, w) \mid u x+v y \leq w\}
$$

Hence C is the intersection of an infinite number of closed halfspaces.

Problem 2

Let C be a nonempty convex set in \mathbf{R}^{n}, and let M be a nonempty affine set in \mathbf{R}^{n}. Show that $M \cap \operatorname{rin}(C)=\emptyset$ is a necessary and sufficient condition for the existence of a hyperplane H containing M, and such that $\operatorname{rin}(C)$ is contained in one of the open halfspaces associated with H.

Solution

If there exists a hyperplane H with the properties stated, the condition $M \cap \operatorname{rin}(C)=\emptyset$ clearly holds. Conversely, if $M \cap \operatorname{rin}(C)=\emptyset$, then M and C can be properly separated. This hyperplane can be chosen to contain M since M is affine. If this hyperplane contains a point in $\operatorname{rin}(C)$, then it must contain all of C. This contradicts the proper separation property, thus showing that $\operatorname{rin}(C)$ is contained in one of the open halfspaces.

Problem 3

Let C_{1} and C_{2} be nonempty convex subsets of \mathbf{R}^{n}, and let B denote the unit ball in $\mathbf{R}^{n}, B=\{x \mid$ $\|x\| \leq 1\}$. A hyperplane H is said to separate strongly C_{1} and C_{2} if there exists an $\epsilon>0$ such that $C_{1}+\epsilon B$ is contained in one of the open halfspaces associated with H and $C_{2}+\epsilon B$ is contained in the other. Show that:
(a) The following three conditions are equivalent.
(i) There exists a hyperplane separating strongly C_{1} and C_{2}.
(ii) There exists a vector $\alpha \in \mathbf{R}^{n}$ such that $\inf _{x \in C_{1}} \alpha^{\prime} x>\sup _{x \in C_{2}} \alpha^{\prime} x$.
(iii) $\inf _{x_{1} \in C_{1}, x_{2} \in C_{2}}\left\|x_{1}-x_{2}\right\|>0$, i.e., $0 \notin \operatorname{cl}\left(C_{2}-C_{1}\right)$.
(b) If C_{1} and C_{2} are disjoint, any one of the five conditions for strict separation, given in Prop. 1.5.3, implies that C_{1} and C_{2} can be strongly separated.

Solution.

(a) We first show that (i) implies (ii). Suppose that C_{1} and C_{2} can be separated strongly. By definition, this implies that for some nonzero vector $a \in \mathbf{R}^{n}, b \in \mathbf{R}$, and $\epsilon>0$, we have

$$
\begin{aligned}
& C_{1}+\epsilon B \subset\left\{x \mid a^{\prime} x>b\right\}, \\
& C_{2}+\epsilon B \subset\left\{x \mid a^{\prime} x<b\right\},
\end{aligned}
$$

where B denotes the closed unit ball. Since $a \neq 0$, we also have

$$
\inf \left\{a^{\prime} y \mid y \in B\right\}<0, \quad \sup \left\{a^{\prime} y \mid y \in B\right\}>0
$$

Therefore, it follows from the preceding relations that

$$
\begin{aligned}
& b \leq \inf \left\{a^{\prime} x+\epsilon a^{\prime} y \mid x \in C_{1}, y \in B\right\}<\inf \left\{a^{\prime} x \mid x \in C_{1}\right\} \\
& b \geq \sup \left\{a^{\prime} x+\epsilon a^{\prime} y \mid x \in C_{2}, y \in B\right\}>\sup \left\{a^{\prime} x \mid x \in C_{2}\right\} .
\end{aligned}
$$

Thus, there exists a vector $a \in \mathbf{R}^{n}$ such that

$$
\inf _{x \in C_{1}} a^{\prime} x>\sup _{x \in C_{2}} a^{\prime} x
$$

proving (ii).
Next, we show that (ii) implies (iii). Suppose that (ii) holds, i.e., there exists some vector $a \in \mathbf{R}^{n}$ such that

$$
\inf _{x \in C_{1}} a^{\prime} x>\sup _{x \in C_{2}} a^{\prime} x
$$

Using the Schwartz inequality, we see that

$$
\begin{aligned}
0 & <\inf _{x \in C_{1}} a^{\prime} x-\sup _{x \in C_{2}} a^{\prime} x \\
& =\inf _{x_{1} \in C_{1}, x_{2} \in C_{2}} a^{\prime}\left(x_{1}-x_{2}\right), \\
& \leq \inf _{x_{1} \in C_{1}, x_{2} \in C_{2}}\|a\|\left\|x_{1}-x_{2}\right\| .
\end{aligned}
$$

It follows that

$$
\inf _{x_{1} \in C_{1}, x_{2} \in C_{2}}\left\|x_{1}-x_{2}\right\|>0,
$$

thus proving (iii). Finally, we show that (iii) implies (i). If (iii) holds, we have for some $\epsilon>0$,

$$
\inf _{x_{1} \in C_{1}, x_{2} \in C_{2}}\left\|x_{1}-x_{2}\right\|>2 \epsilon>0
$$

From this we obtain for all $x_{1} \in C_{1}$, all $x_{2} \in C_{2}$, and for all y_{1}, y_{2} with $\left\|y_{1}\right\| \leq \epsilon,\left\|y_{2}\right\| \leq \epsilon$,

$$
\left\|\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)\right\| \geq\left\|x_{1}-x_{2}\right\|-\left\|y_{1}\right\|-\left\|y_{2}\right\|>0
$$

which implies that $0 \notin\left(C_{1}+\epsilon B\right)-\left(C_{2}+\epsilon B\right)$. Therefore, the convex sets $C_{1}+\epsilon B$ and $C_{2}+\epsilon B$ are disjoint. By the Separating Hyperplane Theorem, we see that $C_{1}+\epsilon B$ and $C_{2}+\epsilon B$ can be separated, i.e., $C_{1}+\epsilon B$ and $C_{2}+\epsilon B$ lie in opposite closed halfspaces associated with the hyperplane that separates them. Then, the sets $C_{1}+(\epsilon / 2) B$ and $C_{2}+(\epsilon / 2) B$ lie in opposite open halfspaces, which by definition implies that C_{1} and C_{2} can be separated strongly.
(b) Since C_{1} and C_{2} are disjoint, we have $0 \notin\left(C_{1}-C_{2}\right)$. Any one of conditions (2)-(5) of Prop. 1.5.3 imply condition (1) of that proposition, which states that the set $C_{1}-C_{2}$ is closed, i.e.,

$$
c l\left(C_{1}-C_{2}\right)=C_{1}-C_{2} .
$$

Hence, we have $0 \notin \operatorname{cl}\left(C_{1}-C_{2}\right)$, which implies that

$$
\inf _{x_{1} \in C_{1}, x_{2} \in C_{2}}\left\|x_{1}-x_{2}\right\|>0
$$

From part (a), it follows that there exists a hyperplane separating C_{1} and C_{2} strongly.

Problem 4

We say that a function $f: \mathbf{R}^{n} \mapsto(-\infty, \infty]$ is quasiconvex if all its level sets

$$
V_{\gamma}=\{x \mid f(x) \leq \gamma\}
$$

are convex. Let X be a convex subset of \mathbf{R}^{n}, let f be a quasiconvex function such that $X \cap \operatorname{dom}(f) \neq$ \emptyset, and denote $f^{*}=\inf _{x \in X} f(x)$.
(a) Assume that f is not constant on any line segment of X, i.e., we do not have $f(x)=c$ for some scalar c and all x in the line segment connecting any two distinct points of X. Show that every local minimum of f over X is also global.
(b) Assume that X is closed, and f is closed and proper. Let Γ be the set of all $\gamma>f^{*}$, and denote

$$
R_{f}=\cap_{\gamma \in \Gamma} R_{\gamma}, \quad L_{f}=\cap_{\gamma \in \Gamma} L_{\gamma},
$$

where R_{γ} and L_{γ} are the recession cone and the lineality space of V_{γ}, respectively. Use the line of proof of Prop. 3.2.4 to show that f attains a minimum over X if any one of the following conditions holds:
(1) $R_{X} \cap R_{f}=L_{X} \cap L_{f}$.
(2) $R_{X} \cap R_{f} \subset L_{f}$, and X is a polyhedral set.

Solution.

(a) Let x^{*} be a local minimum of f over X and assume, to arrive at a contradiction, that there exists a vector $\bar{x} \in X$ such that $f(\bar{x})<f\left(x^{*}\right)$. Then, \bar{x} and x^{*} belong to the set $X \cap V_{\gamma^{*}}$, where $\gamma^{*}=f\left(x^{*}\right)$. Since this set is convex, the line segment connecting x^{*} and \bar{x} belongs to the set, implying that

$$
f\left(\alpha \bar{x}+(1-\alpha) x^{*}\right) \leq \gamma^{*}=f\left(x^{*}\right), \quad \forall \alpha \in[0,1] .
$$

For each integer $k \geq 1$, there must exist an $\alpha_{k} \in(0,1 / k]$ such that

$$
f\left(\alpha_{k} \bar{x}+\left(1-\alpha_{k}\right) x^{*}\right)<f\left(x^{*}\right), \quad \text { for some } \alpha_{k} \in(0,1 / k]
$$

otherwise, we would have that $f(x)$ is constant for x on the line segment connecting x^{*} and $(1 / k) \bar{x}+$ $(1-(1 / k)) x^{*}$. This contradicts the local optimality of x^{*}.
(b) We consider the level sets

$$
V_{\gamma}=\{x \mid f(x) \leq \gamma\}
$$

for $\gamma>f^{*}$. Let $\left\{\gamma_{k}\right\}$ be a scalar sequence such that $\gamma_{k} \downarrow f^{*}$. Using the fact that for two nonempty closed convex sets C and D such that $C \in D$, we have $R_{C} \in R_{D}$, it can be seen that

$$
R_{f}=\cap_{\gamma \in \Gamma} R_{\gamma}=\cap_{k=1}^{\infty} R_{\gamma_{k}}
$$

Similarly, L_{f} can be written as

$$
L_{f}=\cap_{\gamma \in \Gamma} L_{\gamma}=\cap_{k=1}^{\infty} L_{\gamma_{k}} .
$$

Under each of the conditions (1) and (2), we will show that the set of minima of f over X, which is given by

$$
X^{*}=\cap_{k=1}^{\infty}\left(X \cap V_{\gamma_{k}}\right)
$$

is nonempty.
Let condition (1) hold. The sets $X \cap V_{\gamma_{k}}$ are nonempty, closed, convex, and nested. Furthermore, for each k, their recession cone is given by $R_{X} \cap R_{\gamma_{k}}$ and their lineality space is given by $L_{X} \cap L_{\gamma_{k}}$. We have that

$$
\cap_{k=1}^{\infty}\left(R_{X} \cap R_{\gamma_{k}}\right)=R_{X} \cap R_{f}
$$

and

$$
\cap_{k=1}^{\infty}\left(L_{X} \cap L_{\gamma_{k}}\right)=L_{X} \cap L_{f},
$$

while by assumption $R_{X} \cap R_{f}=L_{X} \cap L_{f}$. Then it follows that X^{*} is nonempty.
Let condition (2) hold. The sets $V_{\gamma_{k}}$ are nested and the intersection $X \cap V_{\gamma_{k}}$ is nonempty for all k. We also have by assumption that $R_{X} \cap R_{f} \in L_{f}$ and X is a polyhedral set. It follows that X^{*} is nonempty.

Problem 5

Let $F: \mathbf{R}^{n+m} \mapsto(-\infty, \infty]$ be a closed proper convex function of two vectors $x \in \mathbf{R}^{n}$ and $z \in \mathbf{R}^{m}$, and let

$$
X=\left\{x \mid \inf _{z \in \mathbf{R}^{m}} F(x, z)<\infty\right\} .
$$

Assume that the function $F(x, \cdot)$ is closed for each $x \in X$. Show that:
(a) If for some $\bar{x} \in X$, the minimum of $F(\bar{x}, \cdot)$ over \mathbf{R}^{m} is attained at a nonempty and compact set, the same is true for all $x \in X$.
(b) If the functions $F(x, \cdot)$ are differentiable for all $x \in X$, they have the same asymptotic slopes along all directions, i.e., for each $d \in \mathbf{R}^{m}$, the value of $\lim _{\alpha \rightarrow \infty} \nabla_{z} F(x, z+\alpha d)^{\prime} d$ is the same for all $x \in X$ and $z \in \mathbf{R}^{m}$.

Solution.

The recession cone of F has the form

$$
R_{F}=\left\{\left(d_{x}, d_{z}\right) \mid\left(d_{x}, d_{z}, 0\right) \in R_{e p i(F)}\right\} .
$$

The (common) recession cone of the nonempty level sets of $F(x, \cdot), x \in X$, has the form

$$
\left\{d_{z} \mid\left(0, d_{z}\right) \in R_{F}\right\},
$$

for all $x \in X$, where R_{F} is the recession cone of F. Furthermore, the recession function of $F(x, \cdot)$ is the same for all $x \in X$.
(a) By the compactness hypothesis, the recession cone of $F(\bar{x}, \cdot)$ consists of just the origin, so the same is true for the recession cones of all $F(x, \cdot), x \in X$. Thus the nonempty level sets of $F(x, \cdot), x \in X$, are all compact.
(b) This is a consequence of the fact that the recession function of $F(x, \cdot)$ is the same for all $x \in X$, and the comments following Prop. 1.4.5

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

