6.253: Convex Analysis and Optimization Homework 4

Prof. Dimitri P. Bertsekas
Spring 2010, M.I.T.

Problem 1

Let $f: \mathbf{R}^{n} \mapsto \mathbf{R}$ be the function

$$
f(x)=\frac{1}{p} \sum_{i=1}^{n}\left|x_{i}\right|^{p}
$$

where $1<p$. Show that the conjugate is

$$
f^{\star}(y)=\frac{1}{q} \sum_{i=1}^{n}\left|y_{i}\right|^{q},
$$

where q is defined by the relation

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Problem 2

(a) Show that if $f_{1}: \mathbf{R}^{n} \mapsto(-\infty, \infty]$ and $f_{2}: \mathbf{R}^{n} \mapsto(-\infty, \infty]$ are closed proper convex functions, with conjugates denoted by $f_{1}{ }^{\star}$ and $f_{2}{ }^{\star}$, respectively, we have

$$
f_{1}(x) \leq f_{2}(x), \quad \forall x \in \mathbf{R}^{n},
$$

if and only if

$$
f_{1}^{\star}(y) \geq f_{2}^{\star}(y), \quad \forall y \in \mathbf{R}^{n} .
$$

(b) Show that if C_{1} and C_{2} are nonempty closed convex sets, we have

$$
C_{1} \subset C_{2}
$$

if and only if

$$
\sigma_{C_{1}}(y) \leq \sigma_{C_{2}}(y), \quad \forall y \in \mathbf{R}^{n} .
$$

Construct an example showing that closedness of C_{1} and C_{2} is a necessary assumption.

Problem 3

Let X_{1}, \ldots, X_{r}, be nonempty subsets of \mathbf{R}^{n}. Derive formulas for the support functions for $X_{1}+$ $\cdots+X_{r}, \operatorname{conv}\left(X_{1}\right)+\cdots+\operatorname{conv}\left(X_{r}\right), \cup_{j=1}^{r} X_{j}$, and $\operatorname{conv}\left(\cup_{j=1}^{r} X_{j}\right)$.

Problem 4

Consider a function ϕ of two real variables x and z taking values in compact intervals X and Z, respectively. Assume that for each $z \in Z$, the function $\phi(\cdot, z)$ is minimized over X at a unique point denoted $\hat{x}(z)$. Similarly, assume that for each $x \in X$, the function $\phi(x, \cdot)$ is maximized over Z at a unique point denoted $\hat{z}(x)$. Assume further that the functions $\hat{x}(z)$ and $\hat{z}(x)$ are continuous over Z and X, respectively. Show that ϕ has a saddle point $\left(x^{*}, z^{*}\right)$. Use this to investigate the existence of saddle points of $\phi(x, z)=x^{2}+z^{2}$ over $X=[0,1]$ and $Z=[0,1]$.

Problem 5

In the context of Section 4.2.2, let $F(x, u)=f_{1}(x)+f_{2}(A x+u)$, where A is an $m \times n$ matrix, and $f_{1}: \mathbf{R}^{n} \mapsto(-\infty, \infty]$ and $f_{2}: \mathbf{R}^{m} \mapsto(-\infty, \infty]$ are closed convex functions. Show that the dual function is

$$
q(\mu)=-f_{1}^{\star}\left(A^{\prime} \mu\right)-f_{2}^{\star}(-\mu),
$$

where f_{1}^{\star} and f_{2}^{\star} are the conjugate functions of f_{1} and f_{2}, respectively. Note: This is the Fenchel duality framework discussed in Section 5.3.5.

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

