6.253: Convex Analysis and Optimization Homework 4

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

Problem 1

Let $f: \mathbf{R}^{n} \mapsto \mathbf{R}$ be the function

$$
f(x)=\frac{1}{p} \sum_{i=1}^{n}\left|x_{i}\right|^{p}
$$

where $1<p$. Show that the conjugate is

$$
f^{\star}(y)=\frac{1}{q} \sum_{i=1}^{n}\left|y_{i}\right|^{q},
$$

where q is defined by the relation

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Solution.

Consider first the case $n=1$. Let x and y be scalars. By setting the derivative of $x y-(1 / p)|x|^{p}$ to zero, and we see that the supremum over x is attained when $\operatorname{sgn}(x)|x|^{p-1}=y$, which implies that $x y=|x|^{p}$ and $|x|^{p-1}=|y|$. By substitution in the formula for the conjugate, we obtain

$$
f^{*}(y)=|x|^{p}-\frac{1}{p}|x|^{p}=\left(1-\frac{1}{p}\right)|x|^{p}=\frac{1}{q}|y|^{\frac{p}{p-1}}=\frac{1}{q}|y|^{q} .
$$

We now note that for any function $f: R^{n} \mapsto(-\infty, \infty]$ that has the form

$$
f(x)=f_{1}\left(x_{1}\right)+\cdots+f_{n}\left(x_{n}\right),
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $f_{i}: R \mapsto(-\infty, \infty], i=1, \ldots, n$, the conjugate is given by

$$
f^{*}(y)=f_{1}^{*}\left(y_{1}\right)+\cdots+f_{n}^{*}\left(y_{n}\right),
$$

where $f_{i}^{*}: R \mapsto(-\infty, \infty]$ is the conjugate of $f_{i}, i=1, \ldots, n$. By combining this fact with the result above, we obtain the desired result.

Problem 2

(a) Show that if $f_{1}: \mathbf{R}^{n} \mapsto(-\infty, \infty]$ and $f_{2}: \mathbf{R}^{n} \mapsto(-\infty, \infty]$ are closed proper convex functions, with conjugates denoted by $f_{1}{ }^{\star}$ and $f_{2}{ }^{\star}$, respectively, we have

$$
f_{1}(x) \leq f_{2}(x), \quad \forall x \in \mathbf{R}^{n},
$$

if and only if

$$
f_{1}^{\star}(y) \geq f_{2}^{\star}(y), \quad \forall y \in \mathbf{R}^{n} .
$$

(b) Show that if C_{1} and C_{2} are nonempty closed convex sets, we have

$$
C_{1} \subset C_{2}
$$

if and only if

$$
\sigma_{C_{1}}(y) \leq \sigma_{C_{2}}(y), \quad \forall y \in \mathbf{R}^{n} .
$$

Construct an example showing that closedness of C_{1} and C_{2} is a necessary assumption.

Solution.

(a) If $f_{1}(x) \leq f_{2}(x)$ for all x, we have for all $y \in R^{n}$,

$$
f_{1}^{*}(y)=\sup _{x \in R^{n}}\left\{x^{\prime} y-f_{1}(x)\right\} \geq \sup _{x \in R^{n}}\left\{x^{\prime} y-f_{1}(x)\right\}=f_{2}^{*}(y) .
$$

The reverse implication follows from the fact that f_{1} and f_{2} are the conjugates of f_{1}^{*} and f_{2}^{*}, respectively.
(b) Consider the indicator functions $\delta_{C_{1}}$ and $\delta_{C_{2}}$ of C_{1} and C_{2}. We have

$$
C_{1} \subset C_{2} \quad \text { if and only if } \quad \delta_{C_{1}}(x) \geq \delta_{C_{2}}(x), \quad \forall x \in R^{n} .
$$

Since $\sigma_{C_{1}}$ and $\sigma_{C_{2}}$ are the conjugates of $\delta_{C_{1}}$ and $\delta_{C_{2}}$, respectively, the result follows from part (a).
To see that the assumption of closedness of C_{1} and C_{2} is needed, consider two convex sets that have the same closure, but none of the two is contained in the other, such as for example $(0,1]$ and $[0,1)$.

Problem 3

Let X_{1}, \ldots, X_{r}, be nonempty subsets of \mathbf{R}^{n}. Derive formulas for the support functions for $X_{1}+$ $\cdots+X_{r}, \operatorname{conv}\left(X_{1}\right)+\cdots+\operatorname{conv}\left(X_{r}\right), \cup_{j=1}^{r} X_{j}$, and $\operatorname{conv}\left(\cup_{j=1}^{r} X_{j}\right)$.

Solution.

Let $X=X_{1}+\cdots+X_{r}$. We have for all $y \in R^{n}$,

$$
\begin{aligned}
\sigma_{X}(y) & =\sup _{x \in X_{1}+\cdots+X_{r}} x^{\prime} y \\
& =\sup _{x_{1} \in X_{1}, \ldots, x_{r} \in X_{r}}\left(x_{1}+\cdots+x_{r}\right)^{\prime} y \\
& =\sup _{x_{1} \in X_{1}} x_{1}^{\prime} y+\cdots+\sup _{x_{r} \in X_{r}} x_{r}^{\prime} y \\
& =\sigma_{X_{1}}(y)+\cdots+\sigma_{X_{r}}(y) .
\end{aligned}
$$

Since X_{j} and $\operatorname{conv}\left(X_{j}\right)$ have the same support function, it follows that

$$
\sigma_{X_{1}}(y)+\cdots+\sigma_{X_{r}}(y)
$$

is also the support function of

$$
\operatorname{conv}\left(X_{1}\right)+\cdots+\operatorname{conv}\left(X_{r}\right) .
$$

Let also $X=\cup_{j=1}^{r} X_{j}$. We have

$$
\sigma_{X}(y)=\sup _{x \in X} y^{\prime} x=\max _{j=1, \ldots, r} \sup _{x \in X_{j}} y^{\prime} x=\max _{j=1, \ldots, r} \sigma_{X_{j}}(y) .
$$

This is also the support function of $\operatorname{conv}\left(\cup_{j=1}^{r} X_{j}\right)$.

Problem 4

Consider a function ϕ of two real variables x and z taking values in compact intervals X and Z, respectively. Assume that for each $z \in Z$, the function $\phi(\cdot, z)$ is minimized over X at a unique point denoted $\hat{x}(z)$. Similarly, assume that for each $x \in X$, the function $\phi(x, \cdot)$ is maximized over Z at a unique point denoted $\hat{z}(x)$. Assume further that the functions $\hat{x}(z)$ and $\hat{z}(x)$ are continuous over Z and X, respectively. Show that ϕ has a saddle point $\left(x^{*}, z^{*}\right)$. Use this to investigate the existence of saddle points of $\phi(x, z)=x^{2}+z^{2}$ over $X=[0,1]$ and $Z=[0,1]$.

Solution.

We consider a function ϕ of two real variables x and z taking values in compact intervals X and Z, respectively. We assume that for each $z \in Z$, the function $\phi(\cdot, z)$ is minimized over X at a unique point denoted $\hat{x}(z)$, and for each $x \in X$, the function $\phi(x, \cdot)$ is maximized over Z at a unique point denoted $\hat{z}(x)$,

$$
\hat{x}(z)=\arg \min _{x \in X} \phi(x, z), \quad \hat{z}(x)=\arg \max _{z \in Z} \phi(x, z)
$$

Consider the composite function $f: X \mapsto X$ given by

$$
f(x)=\hat{x}(\hat{z}(x)),
$$

which is a continuous function in view of the assumption that the functions $\hat{x}(z)$ and $\hat{z}(x)$ are continuous over Z and X, respectively. Assume that the compact interval X is given by $[a, b]$. We now show that the function f has a fixed point, i.e., there exists some $x^{*} \in[a, b]$ such that

$$
f\left(x^{*}\right)=x^{*}
$$

Define the function $g: X \mapsto X$ by

$$
g(x)=f(x)-x .
$$

Assume that $f(a)>a$ and $f(b)<b$, since otherwise [in view of the fact that $f(a)$ and $f(b)$ lie in the range $[a, b]$], we must have $f(a)=a$ and $f(b)=b$, and we are done. We have

$$
\begin{gathered}
g(a)=f(a)-a>0, \\
g(b)=f(b)-b<0 .
\end{gathered}
$$

Since g is a continuous function, the preceding relations imply that there exists some $x^{*} \in(a, b)$ such that $g\left(x^{*}\right)=0$, i.e., $f\left(x^{*}\right)=x^{*}$. Hence, we have

$$
\hat{x}\left(\hat{z}\left(x^{*}\right)\right)=x^{*} \text {. }
$$

Denoting $\hat{z}\left(x^{*}\right)$ by z^{*}, we obtain

$$
x^{*}=\hat{x}\left(z^{*}\right), \quad z^{*}=\hat{z}\left(x^{*}\right) .
$$

By definition, a pair (\bar{x}, \bar{z}) is a saddle point if and only if

$$
\max _{z \in Z} \phi(\bar{x}, z)=\phi(\bar{x}, \bar{z})=\min _{x \in X} \phi(x, \bar{z})
$$

or equivalently, if $\bar{x}=\hat{x}(\bar{z})$ and $\bar{z}=\hat{z}(\bar{x})$. Therefore, we see that $\left(x^{*}, z^{*}\right)$ is a saddle point of ϕ.
We now consider the function $\phi(x, z)=x^{2}+z^{2}$ over $X=[0,1]$ and $Z=[0,1]$. For each $z \in[0,1]$, the function $\phi(\cdot, z)$ is minimized over $[0,1]$ at a unique point $\hat{x}(z)=0$, and for each $x \in[0,1]$, the function $\phi(x, \cdot)$ is maximized over $[0,1]$ at a unique point $\hat{z}(x)=1$. These two curves intersect at $\left(x^{*}, z^{*}\right)=(0,1)$, which is the unique saddle point of ϕ.

Problem 5

In the context of Section 4.2.2, let $F(x, u)=f_{1}(x)+f_{2}(A x+u)$, where A is an $m \times n$ matrix, and $f_{1}: \mathbf{R}^{n} \mapsto(-\infty, \infty]$ and $f_{2}: \mathbf{R}^{m} \mapsto(-\infty, \infty]$ are closed convex functions. Show that the dual function is

$$
q(\mu)=-f_{1}^{\star}\left(A^{\prime} \mu\right)-f_{2}^{\star}(-\mu),
$$

where f_{1}^{\star} and f_{2}^{\star} are the conjugate functions of f_{1} and f_{2}, respectively. Note: This is the Fenchel duality framework discussed in Section 5.3.5.

Solution.

From Section 4.2.1, the dual function is

$$
q(\mu)=-p^{\star}(-\mu),
$$

where p^{\star} is the conjugate of the function

$$
p(u)=i n f_{x \in R^{n}} F(x, u) .
$$

The max crossing value is

$$
q^{*}=\sup _{\mu}\left\{-p^{\star}(-\mu)\right\} .
$$

By using the change of variables $z=A x+u$ in the following calculation, we have

$$
\begin{aligned}
p^{\star}(-\mu) & =\sup _{u}\left\{-\mu^{\prime} u-\inf _{x}\left\{f_{1}(x)+f_{2}(A x+u)\right\}\right\} \\
& =\sup _{z, x}\left\{-\mu^{\prime}(z-A x)-f_{1}(x)-f_{2}(z)\right\} \\
& =f_{1}^{\star}\left(A^{\prime} \mu\right)+f_{2}^{\star}(-\mu),
\end{aligned}
$$

where f_{1}^{\star} and f_{2}^{\star} are the conjugate functions of f_{1} and f_{2}, respectively. Thus,

$$
q(\mu)=-f_{1}^{\star}\left(A^{\prime} \mu\right)-f_{2}^{\star}(-\mu) .
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

