6.253: Convex Analysis and Optimization Homework 5

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

Problem 1

Consider the convex programming problem

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in X, \quad g(x) \leq 0,
\end{array}
$$

of Section 5.3, and assume that the set X is described by equality and inequality constraints as

$$
X=\left\{x \mid l_{i}(x)=0, i=1, \ldots, \bar{m}, g_{j}(x) \leq 0, j=r+1, \ldots, \bar{r}\right\} .
$$

Then the problem can alternatively be described without an abstract set constraint, in terms of all of the constraint functions

$$
l_{i}(x)=0, \quad i=1, \ldots, \bar{m}, \quad g_{j}(x) \leq 0, \quad j=1, \ldots, \bar{r} .
$$

We call this the extended representation of (P). Show if there is no duality gap and there exists a dual optimal solution for the extended representation, the same is true for the original problem.

Problem 2

Consider the class of problems

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in X, \quad g_{j}(x) \leq u_{j}, \quad j=1, \ldots, r,
\end{array}
$$

where $u=\left(u_{1}, \ldots, u_{r}\right)$ is a vector parameterizing the right-hand side of the constraints. Given two distinct values \bar{u} and \tilde{u} of u, let \bar{f} and \tilde{f} be the corresponding optimal values, and assume that \bar{f} and \tilde{f} are finite. Assume further that $\bar{\mu}$ and $\tilde{\mu}$ are corresponding dual optimal solutions and that there is no duality gap. Show that

$$
\tilde{\mu}^{\prime}(\tilde{u}-\bar{u}) \leq \bar{f}-\tilde{f} \leq \bar{\mu}^{\prime}(\tilde{u}-\bar{u}) .
$$

Problem 3

Let $g_{j}: R^{n} \mapsto R, j=1, \ldots, r$, be convex functions over the nonempty convex subset of R^{n}. Show that the system

$$
g_{j}(x)<0, \quad j=1, \ldots, r
$$

has no solution within X if and only if there exists a vector $\mu \in R^{r}$ such that

$$
\begin{gathered}
\sum_{j=1}^{r} \mu_{j}=1, \quad \mu \geq 0 \\
\mu^{\prime} g(x) \geq 0, \quad \forall x \in X .
\end{gathered}
$$

Hint: Consider the convex program

$$
\begin{array}{ll}
\underset{x, y}{\operatorname{minimize}} & y \\
\text { subject to } & x \in X, \quad y \in R, \quad g_{j}(x) \leq y, \quad j=1, \ldots, r
\end{array}
$$

Problem 4

Consider the problem

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in X, \quad g(x) \leq 0
\end{array}
$$

where X is a convex set, and f and g_{j} are convex over X. Assume that the problem has at least one feasible solution. Show that the following are equivalent.
(i) The dual optimal value $q^{*}=\sup _{\mu \in R^{r}} q(\mu)$ is finite.
(ii) The primal function p is proper.
(iii) The set

$$
M=\left\{(u, w) \in R^{r+1} \mid \text { there is an } x \in X \text { such that } g(x) \leq u, f(x) \leq w\right\}
$$

does not contain a vertical line.

Problem 5

Consider a proper convex function F of two vectors $x \in R^{n}$ and $y \in R^{m}$. For a fixed $(\bar{x}, \bar{y}) \in$ $\operatorname{dom}(F)$, let $\partial_{x} F(\bar{x}, \bar{y})$ and $\partial_{y} F(\bar{x}, \bar{y})$ be the subdifferentials of the functions $F(\cdot, \bar{y})$ and $F(\bar{x}, \cdot)$ at \bar{x} and \bar{y}, respectively. (a) Show that

$$
\partial F(\bar{x}, \bar{y}) \subset \partial_{x} F(\bar{x}, \bar{y}) \times \partial_{y} F(\bar{x}, \bar{y})
$$

and give an example showing that the inclusion may be strict in general. (b) Assume that F has the form

$$
F(x, y)=h_{1}(x)+h_{2}(y)+h(x, y),
$$

where h_{1} and h_{2} are proper convex functions, and h is convex, real-valued, and differentiable. Show that the formula of part (a) holds with equality.

Problem 6

This exercise shows how a duality gap results in nondifferentiability of the dual function. Consider the problem

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in X, \quad g(x) \leq 0
\end{array}
$$

and assume that for all $\mu \geq 0$, the infimum of the Lagrangian $L(x, \mu)$ over X is attained by at least one $x_{\mu} \in X$. Show that if there is a duality gap, then the dual function $q(\mu)=\inf _{x \in X} L(x, \mu)$ is nondifferentiable at every dual optimal solution. Hint: If q is differentiable at a dual optimal solution μ^{*}, by the theory of Section 5.3, we must have $\partial q\left(\mu^{*}\right) / \partial \mu_{j} \leq 0$ and $\mu_{j}^{*} \partial q\left(\mu^{*}\right) / \partial \mu_{j}=0$ for all j. Use optimality conditions for μ^{*}, together with any vector $x_{\mu^{*}}$ that minimizes $L\left(x, \mu^{*}\right)$ over X, to show that there is no duality gap.

Problem 7

Consider the problem

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x)=10 x_{1}+3 x_{2} \\
\text { subject to } & 5 x_{1}+x_{2} \geq 4, x_{1}, x_{2}=0 \text { or } 1,
\end{array}
$$

(a) Sketch the set of constraint-cost pairs $\left\{\left(4-5 x_{1}-x_{2}, 10 x_{1}+3 x_{2}\right) \mid x_{1}, x_{2}=0\right.$ or 1$\}$.
(b)Describe the corresponding MC/MC framework as per Section 4.2.3.
(c) Solve the problem and its dual, and relate the solutions to your sketch in part (a).

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

