# 6.253: Convex Analysis and Optimization Homework 5 

Prof. Dimitri P. Bertsekas

Spring 2010, M.I.T.

## Problem 1

Consider the convex programming problem

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in X, \quad g(x) \leq 0
\end{array}
$$

of Section 5.3, and assume that the set $X$ is described by equality and inequality constraints as

$$
X=\left\{x \mid h_{i}(x)=0, i=1, \ldots, \bar{m}, g_{j}(x) \leq 0, j=r+1, \ldots, \bar{r}\right\} .
$$

Then the problem can alternatively be described without an abstract set constraint, in terms of all of the constraint functions

$$
h_{i}(x)=0, \quad i=1, \ldots, \bar{m}, \quad g_{j}(x) \leq 0, \quad j=1, \ldots, \bar{r} .
$$

We call this the extended representation of (P). Show if there is no duality gap and there exists a dual optimal solution for the extended representation, the same is true for the original problem.

## Solution.

Assume that there exists a dual optimal solution in the extended representation. Thus there exist nonnegative scalars $\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}, \lambda_{m+1}^{*}, \ldots, \lambda_{\bar{m}}^{*}$ and $\mu_{1}^{*}, \ldots, \mu_{r}^{*}, \mu_{r+1}^{*}, \ldots, \mu_{\bar{r}}^{*}$ such that

$$
f^{*}=\inf _{x \in R^{n}}\left\{f(x)+\sum_{i=1}^{\bar{m}} \lambda_{i}^{*} h_{i}(x)+\sum_{j=1}^{\bar{r}} \mu_{j}^{*} g_{j}(x)\right\}
$$

from which we have

$$
f^{*} \leq f(x)+\sum_{i=1}^{\bar{m}} \lambda_{i}^{*} h_{i}(x)+\sum_{j=1}^{\bar{r}} \mu_{j}^{*} g_{j}(x), \quad \forall x \in R^{n} .
$$

For any $x \in X$, we have $h_{i}(x)=0$ for all $i=1, \ldots, \bar{m}$, and $g_{j}(x) \leq 0$ for all $j=r+1, \ldots, \bar{r}$, so that $\mu_{j}^{*} g_{j}(x) \leq 0$ for all $j=r+1, \ldots, \bar{r}$. Therefore, it follows from the preceding relation that

$$
f^{*} \leq f(x)+\sum_{j=1}^{r} \mu_{j}^{*} g_{j}(x), \quad \forall x \in X
$$

Taking the infimum over all $x \in X$, it follows that

$$
\begin{aligned}
f^{*} & \leq \inf _{x \in X}\left\{f(x)+\sum_{j=1}^{r} \mu_{j}^{*} g_{j}(x)\right\} \\
& \leq \inf _{x \in X, g_{j}(x) \leq 0, j=1, \ldots, r}\left\{f(x)+\sum_{j=1}^{r} \mu_{j}^{*} g_{j}(x)\right\} \\
& \leq \sum_{\substack{x \in X, h_{2}(x)=0, i=1, \ldots, m \\
g_{j}(x) \leq 0, j=1, \ldots, r}} f(x) \\
& =f^{*} .
\end{aligned}
$$

Hence, equality holds throughout above, showing that the scalars $\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}, \mu_{1}^{*}, \ldots, \mu_{r}^{*}$ constitute a dual optimal solution for the original representation.

## Problem 2

Consider the class of problems

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in X, \quad g_{j}(x) \leq u_{j}, \quad j=1, \ldots, r,
\end{array}
$$

where $u=\left(u_{1}, \ldots, u_{r}\right)$ is a vector parameterizing the right-hand side of the constraints. Given two distinct values $\bar{u}$ and $\tilde{u}$ of $u$, let $\bar{f}$ and $\tilde{f}$ be the corresponding optimal values, and assume that $\bar{f}$ and $\tilde{f}$ are finite. Assume further that $\bar{\mu}$ and $\tilde{\mu}$ are corresponding dual optimal solutions and that there is no duality gap. Show that

$$
\tilde{\mu}^{\prime}(\tilde{u}-\bar{u}) \leq \bar{f}-\tilde{f} \leq \bar{\mu}^{\prime}(\tilde{u}-\bar{u}) .
$$

## Solution.

We have

$$
\begin{aligned}
& \bar{f}=\inf _{x \in X}\left\{f(x)+\bar{\mu}^{\prime}(g(x)-\bar{u})\right\} \\
& f=\inf _{x \in X}\left\{f(x)+\mu^{\prime}(g(x)-u)\right\}
\end{aligned}
$$

Let $\bar{q}(\mu)$ denote the dual function of the problem corresponding to $\bar{u}$ :

$$
\bar{q}(\mu)=\inf _{x \in X}\left\{f(x)+\mu^{\prime}(g(x)-\bar{u})\right\} .
$$

We have

$$
\begin{aligned}
\bar{f}-f & =\inf _{x \in X}\left\{f(x)+\bar{\mu}^{\prime}(g(x)-\bar{u})\right\}-\inf _{x \in X}\left\{f(x)+\mu^{\prime}(g(x)-u)\right\} \\
& =\inf _{x \in X}\left\{f(x)+\bar{\mu}^{\prime}(g(x)-\bar{u})\right\}-\inf _{x \in X}\left\{f(x)+\mu^{\prime}(g(x)-\bar{u})\right\}+\mu^{\prime}(u-\bar{u}) \\
& =\bar{q}(\bar{\mu})-\bar{q}(\mu)+\mu^{\prime}(u-\bar{u}) \\
& \geq \mu^{\prime}(u-\bar{u}),
\end{aligned}
$$

where the last inequality holds because $\bar{\mu}$ maximizes $\bar{q}$.
This proves the left-hand side of the desired inequality. Interchanging the roles of $\bar{f}, \bar{u}, \bar{\mu}$, and $f, u, \mu$, shows the desired right-hand side.

## Problem 3

Let $g_{j}: R^{n} \mapsto R, j=1, \ldots, r$, be convex functions over the nonempty convex subset of $R^{n}$. Show that the system

$$
g_{j}(x)<0, \quad j=1, \ldots, r
$$

has no solution within $X$ if and only if there exists a vector $\mu \in R^{r}$ such that

$$
\begin{gathered}
\sum_{j=1}^{r} \mu_{j}=1, \quad \mu \geq 0, \\
\mu^{\prime} g(x) \geq 0, \quad \forall x \in X .
\end{gathered}
$$

Hint: Consider the convex program

$$
\begin{array}{ll}
\underset{x, y}{\operatorname{minimize}} & y \\
\text { subject to } & x \in X, \quad y \in R, \quad g_{j}(x) \leq y, \quad j=1, \ldots, r .
\end{array}
$$

## Solution.

The dual function for the problem in the hint is

$$
\begin{aligned}
q(\mu) & =\inf _{y \in R, x \in X}\left\{y+\sum_{j=1}^{r} \mu_{j}\left(g_{j}(x)-y\right)\right\} \\
& = \begin{cases}\inf _{x \in X} \sum_{j=1}^{r} \mu_{j} g_{j}(x) & \text { if } \sum_{j=1}^{r} \mu_{j}=1, \\
-\infty & \text { if } \sum_{j=1}^{r} \mu_{j} \neq 1 .\end{cases}
\end{aligned}
$$

The problem in the hint satisfies the Slater condition, so the dual problem has an optimal solution $\mu^{*}$ and there is no duality gap.

Clearly the problem in the hint has an optimal value that is greater or equal to 0 if and only if the system of inequalities

$$
g_{j}(x)<0, \quad j=1, \ldots, r
$$

has no solution within $X$. Since there is no duality gap, we have

$$
\max _{\mu \geq 0, \sum_{j=1}^{r} \mu_{j}=1} q(\mu) \geq 0
$$

if and only if the system of inequalities $g_{j}(x)<0, j=1, \ldots, r$, has no solution within $X$. This is equivalent to the statement we want to prove.

## Problem 4

Consider the problem

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in X, \quad g(x) \leq 0,
\end{array}
$$

where $X$ is a convex set, and $f$ and $g_{j}$ are convex over $X$. Assume that the problem has at least one feasible solution. Show that the following are equivalent.
(i) The dual optimal value $q^{*}=\sup _{\mu \in R^{r}} q(\mu)$ is finite.
(ii) The primal function $p$ is proper.
(iii) The set

$$
M=\left\{(u, w) \in R^{r+1} \mid \text { there is an } x \in X \text { such that } g(x) \leq u, f(x) \leq w\right\}
$$

does not contain a vertical line.

## Solution.

We note that $-q$ is closed and convex, and that

$$
q(\mu)=\inf _{u \in R^{r}}\left\{p(u)+\mu^{\prime} u\right\}, \quad \forall \mu \in R^{r} .
$$

Since $q(\mu) \leq p(0)$ for all $\mu \in R^{r}$, given the feasibility of the problem [i.e., $p(0)<\infty$ ], we see that $q^{*}$ is finite if and only if $q$ is proper. Since $q$ is the conjugate of $p(-u)$ and $p$ is convex, by the Conjugacy Theorem, $q$ is proper if and only if $p$ is proper. Hence (i) is equivalent to (ii).

We note that the epigraph of $p$ is the closure of $M$. Hence, given the feasibility of the problem, (ii) is equivalent to the closure of $M$ not containing a vertical line. Since $M$ is convex, its closure does not contain a line if and only if $M$ does not contain a line (since the closure and the relative interior of $M$ have the same recession cone). Hence (ii) is equivalent to (iii).

## Problem 5

Consider a proper convex function $F$ of two vectors $x \in R^{n}$ and $y \in R^{m}$. For a fixed $(\bar{x}, \bar{y}) \in$ $\operatorname{dom}(F)$, let $\partial_{x} F(\bar{x}, \bar{y})$ and $\partial_{y} F(\bar{x}, \bar{y})$ be the subdifferentials of the functions $F(\cdot, \bar{y})$ and $F(\bar{x}, \cdot)$ at $\bar{x}$ and $\bar{y}$, respectively. (a) Show that

$$
\partial F(\bar{x}, \bar{y}) \subset \partial_{x} F(\bar{x}, \bar{y}) \times \partial_{y} F(\bar{x}, \bar{y}),
$$

and give an example showing that the inclusion may be strict in general. (b) Assume that $F$ has the form

$$
F(x, y)=h_{1}(x)+h_{2}(y)+h(x, y),
$$

where $h_{1}$ and $h_{2}$ are proper convex functions, and $h$ is convex, real-valued, and differentiable. Show that the formula of part (a) holds with equality.

## Solution.

(a) We have $\left(g_{x}, g_{y}\right) \in \partial F(\bar{x}, \bar{y})$ if and only if

$$
F(x, y) \geq F(\bar{x}, \bar{y})+g_{x}^{\prime}(x-\bar{x})+g_{y}^{\prime}(y-\bar{y}), \quad \forall x \in R^{n}, y \in R^{m} .
$$

By setting $y=\bar{y}$, we obtain that $g_{x} \in \partial_{x} F(\bar{x}, \bar{y})$, and by setting $x=\bar{x}$, we obtain that $g_{y} \in$ $\partial_{y} F(\bar{x}, \bar{y})$, so that $\left(g_{x}, g_{y}\right) \in \partial_{x} F(\bar{x}, \bar{y}) \times \partial_{y} F(\bar{x}, \bar{y})$.

For an example where the inclusion is strict, consider any function whose subdifferential is not a Cartesian product at some point, such as $F(x, y)=|x+y|$ at points $(\bar{x}, \bar{y})$ with $\bar{x}+\bar{y}=0$.
(b) Since $F$ is the sum of functions of the given form, we have

$$
\partial F(\bar{x}, \bar{y})=\left\{\left(g_{x}, 0\right) \mid g_{x} \in \partial h_{1}(\bar{x})\right\}+\left\{\left(0, g_{y}\right) \mid g_{y} \in \partial h_{2}(\bar{y})\right\}+\{\nabla h(\bar{x}, \bar{y})\}
$$

[the relative interior condition of the proposition is clearly satisfied]. Since

$$
\begin{gathered}
\nabla h(\bar{x}, \bar{y})=\left(\nabla_{x} h(\bar{x}, \bar{y}), \nabla_{y} h(\bar{x}, \bar{y})\right), \\
\partial_{x} F(\bar{x}, \bar{y})=\partial h_{1}(\bar{x})+\nabla_{x} h(\bar{x}, \bar{y}), \\
\partial_{y} F(\bar{x}, \bar{y})=\partial h_{2}(\bar{y})+\nabla_{y} h(\bar{x}, \bar{y}),
\end{gathered}
$$

the result follows.

## Problem 6

This exercise shows how a duality gap results in nondifferentiability of the dual function. Consider the problem

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in X, \quad g(x) \leq 0
\end{array}
$$

and assume that for all $\mu \geq 0$, the infimum of the Lagrangian $L(x, \mu)$ over $X$ is attained by at least one $x_{\mu} \in X$. Show that if there is a duality gap, then the dual function $q(\mu)=\inf _{x \in X} L(x, \mu)$ is nondifferentiable at every dual optimal solution. Hint: If $q$ is differentiable at a dual optimal solution $\mu^{*}$, by the theory of Section 5.3, we must have $\partial q\left(\mu^{*}\right) / \partial \mu_{j} \leq 0$ and $\mu_{j}^{*} \partial q\left(\mu^{*}\right) / \partial \mu_{j}=0$ for all $j$. Use optimality conditions for $\mu^{*}$, together with any vector $x_{\mu^{*}}$ that minimizes $L\left(x, \mu^{*}\right)$ over $X$, to show that there is no duality gap.

## Solution.

To obtain a contradiction, assume that $q$ is differentiable at some dual optimal solution $\mu^{*} \in M$, where $M=\left\{\mu \in R^{r} \mid \mu \geq 0\right\}$. Then

$$
\nabla q\left(\mu^{*}\right)\left(\mu^{*}-\mu\right) \geq 0, \quad \forall \mu \geq 0
$$

If $\mu_{j}^{*}=0$, then by letting $\mu=\mu^{*}+\gamma e_{j}$ for a scalar $\gamma \geq 0$, and the vector $e_{j}$ whose $j$ th component is 1 and the other components are 0 , from the preceding relation we obtain $\partial q\left(\mu^{*}\right) / \partial \mu_{j} \leq 0$. Similarly, if $\mu_{j}^{*}>0$, then by letting $\mu=\mu^{*}+\gamma e_{j}$ for a sufficiently small scalar $\gamma$ (small enough so that $\left.\mu^{*}+\gamma e_{j} \in M\right)$, from the preceding relation we obtain $\partial q\left(\mu^{*}\right) / \partial \mu_{j}=0$. Hence

$$
\begin{gathered}
\partial q\left(\mu^{*}\right) / \partial \mu_{j} \leq 0, \quad \forall j=1, \ldots, r \\
\mu_{j}^{*} \partial q\left(\mu^{*}\right) / \partial \mu_{j}=0, \quad \forall j=1, \ldots, r .
\end{gathered}
$$

Since $q$ is differentiable at $\mu^{*}$, we have that

$$
\nabla q\left(\mu^{*}\right)=g\left(x^{*}\right),
$$

for some vector $x^{*} \in X$ such that $q\left(\mu^{*}\right)=L\left(x^{*}, \mu^{*}\right)$. This and the preceding two relations imply that $x^{*}$ and $\mu^{*}$ satisfy the necessary and sufficient optimality conditions for an optimal primal and dual optimal solution pair. It follows that there is no duality gap, a contradiction.

## Problem 7

Consider the problem

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x)=10 x_{1}+3 x_{2} \\
\text { subject to } & 5 x_{1}+x_{2} \geq 4, x_{1}, x_{2}=0 \text { or } 1,
\end{array}
$$

(a) Sketch the set of constraint-cost pairs $\left\{\left(4-5 x_{1}-x_{2}, 10 x_{1}+3 x_{2}\right) \mid x_{1}, x_{2}=0\right.$ or 1$\}$.
(b)Describe the corresponding MC/MC framework as per Section 4.2.3.
(c) Solve the problem and its dual, and relate the solutions to your sketch in part (a).

## Solution.

(a) The set of constraint-cost pairs contains 4 points: $(-2,13),(-1,10),(3,3),(4,0)$.
(b) To each of these 4 points we add the first orphant and we get the $\bar{M}$ set.
(c) The primal optimal solution is $x^{*}=(1,0)$ and the primal optimal cost is $p^{*}=10$. The dual function is easily found to be:

$$
q(\mu)= \begin{cases}4 \mu & \text { if } \mu \leq 2 \\ 10-\mu & \text { if } 2 \leq \mu \leq 3 \\ 13-2 \mu & \text { if } 3 \leq \mu\end{cases}
$$

Therefore $q^{*}=8$. This is the intersection of the line segment connecting the points $(4,0),(-1,10)$ with the $y$-axis.

MIT OpenCourseWare
http://ocw.mit.edu

### 6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

