LECTURE 3

LECTURE OUTLINE

- Differentiable Convex Functions
- Convex and Affine Hulls
- Caratheodory's Theorem

Reading: Sections 1.1, 1.2

All figures are courtesy of Athena Scientific, and are used with permission.

DIFFERENTIABLE CONVEX FUNCTIONS

• Let $C \subset \Re^n$ be a convex set and let $f : \Re^n \mapsto \Re$ be differentiable over \Re^n .

(a) The function f is convex over C iff

$$f(z) \ge f(x) + (z - x)' \nabla f(x), \qquad \forall \ x, z \in C$$

(b) If the inequality is strict whenever $x \neq z$, then f is strictly convex over C.

PROOF IDEAS

OPTIMALITY CONDITION

• Let C be a nonempty convex subset of \Re^n and let $f: \Re^n \mapsto \Re$ be convex and differentiable over an open set that contains C. Then a vector $x^* \in C$ minimizes f over C if and only if

 $\nabla f(x^*)'(x-x^*) \ge 0, \qquad \forall \ x \in C.$

Proof: If the condition holds, then

$$f(x) \ge f(x^*) + (x - x^*)' \nabla f(x^*) \ge f(x^*), \quad \forall x \in C,$$

so x^* minimizes f over C.

Converse: Assume the contrary, i.e., x^* minimizes f over C and $\nabla f(x^*)'(x-x^*) < 0$ for some $x \in C$. By differentiation, we have

$$\lim_{\alpha \downarrow 0} \frac{f(x^* + \alpha(x - x^*)) - f(x^*)}{\alpha} = \nabla f(x^*)'(x - x^*) < 0$$

so $f(x^* + \alpha(x - x^*))$ decreases strictly for sufficiently small $\alpha > 0$, contradicting the optimality of x^* . **Q.E.D.**

PROJECTION THEOREM

- Let C be a nonempty closed convex set in \Re^n .
 - (a) For every $z \in \Re^n$, there exists a unique minimum of

$$f(x) = \|z - x\|^2$$

over all $x \in C$ (called the projection of z on C).

(b) x^* is the projection of z if and only if

$$(x - x^*)'(z - x^*) \le 0, \qquad \forall \ x \in C$$

Proof: (a) f is strictly convex and has compact level sets.

(b) This is just the necessary and sufficient optimality condition

$$\nabla f(x^*)'(x-x^*) \ge 0, \qquad \forall \ x \in C.$$

TWICE DIFFERENTIABLE CONVEX FNS

• Let C be a convex subset of \Re^n and let f: $\Re^n \mapsto \Re$ be twice continuously differentiable over \Re^n .

- (a) If $\nabla^2 f(x)$ is positive semidefinite for all $x \in C$, then f is convex over C.
- (b) If $\nabla^2 f(x)$ is positive definite for all $x \in C$, then f is strictly convex over C.
- (c) If C is open and f is convex over C, then $\nabla^2 f(x)$ is positive semidefinite for all $x \in C$.

Proof: (a) By mean value theorem, for $x, y \in C$

$$f(y) = f(x) + (y-x)'\nabla f(x) + \frac{1}{2}(y-x)'\nabla^2 f\left(x + \alpha(y-x)\right)(y-x)$$

for some $\alpha \in [0, 1]$. Using the positive semidefiniteness of $\nabla^2 f$, we obtain

$$f(y) \ge f(x) + (y - x)' \nabla f(x), \qquad \forall x, y \in C$$

From the preceding result, f is convex.

(b) Similar to (a), we have $f(y) > f(x) + (y - x)'\nabla f(x)$ for all $x, y \in C$ with $x \neq y$, and we use the preceding result.

(c) By contradiction ... similar.

CONVEX AND AFFINE HULLS

• Given a set $X \subset \Re^n$:

• A convex combination of elements of X is a vector of the form $\sum_{i=1}^{m} \alpha_i x_i$, where $x_i \in X$, $\alpha_i \geq 0$, and $\sum_{i=1}^{m} \alpha_i = 1$.

• The convex hull of X, denoted $\operatorname{conv}(X)$, is the intersection of all convex sets containing X. (Can be shown to be equal to the set of all convex combinations from X).

• The affine hull of X, denoted $\operatorname{aff}(X)$, is the intersection of all affine sets containing X (an affine set is a set of the form $\overline{x} + S$, where S is a subspace).

• A nonnegative combination of elements of X is a vector of the form $\sum_{i=1}^{m} \alpha_i x_i$, where $x_i \in X$ and $\alpha_i \geq 0$ for all *i*.

• The cone generated by X, denoted cone(X), is the set of all nonnegative combinations from X:

- It is a convex cone containing the origin.
- It need not be closed!
- If X is a finite set, $\operatorname{cone}(X)$ is closed (non-trivial to show!)

CARATHEODORY'S THEOREM

- Let X be a nonempty subset of \Re^n .
 - (a) Every $x \neq 0$ in cone(X) can be represented as a positive combination of vectors x_1, \ldots, x_m from X that are linearly independent (so $m \leq n$).
 - (b) Every $x \notin X$ that belongs to $\operatorname{conv}(X)$ can be represented as a convex combination of vectors x_1, \ldots, x_m from X with $m \leq n+1$.

PROOF OF CARATHEODORY'S THEOREM

(a) Let x be a nonzero vector in $\operatorname{cone}(X)$, and let m be the smallest integer such that x has the form $\sum_{i=1}^{m} \alpha_i x_i$, where $\alpha_i > 0$ and $x_i \in X$ for all $i = 1, \ldots, m$. If the vectors x_i were linearly dependent, there would exist $\lambda_1, \ldots, \lambda_m$, with

$$\sum_{i=1}^{m} \lambda_i x_i = 0$$

and at least one of the λ_i is positive. Consider

$$\sum_{i=1}^{m} (\alpha_i - \overline{\gamma}\lambda_i) x_i,$$

where $\overline{\gamma}$ is the largest γ such that $\alpha_i - \gamma \lambda_i \geq 0$ for all *i*. This combination provides a representation of *x* as a positive combination of fewer than *m* vectors of *X* – a contradiction. Therefore, x_1, \ldots, x_m , are linearly independent.

(b) Use "lifting" argument: apply part (a) to $Y = \{(x, 1) \mid x \in X\}.$

AN APPLICATION OF CARATHEODORY

• The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence in conv(X) and show that it has a convergent subsequence whose limit is in conv(X).

By Caratheodory, a sequence in $\operatorname{conv}(X)$ can be expressed as $\left\{\sum_{i=1}^{n+1} \alpha_i^k x_i^k\right\}$, where for all k and $i, \, \alpha_i^k \geq 0, \, x_i^k \in X$, and $\sum_{i=1}^{n+1} \alpha_i^k = 1$. Since the sequence

$$\{(\alpha_1^k, \dots, \alpha_{n+1}^k, x_1^k, \dots, x_{n+1}^k)\}$$

is bounded, it has a limit point

$$\{(\alpha_1,\ldots,\alpha_{n+1},x_1,\ldots,x_{n+1})\},\$$

which must satisfy $\sum_{i=1}^{n+1} \alpha_i = 1$, and $\alpha_i \ge 0$, $x_i \in X$ for all *i*.

The vector $\sum_{i=1}^{n+1} \alpha_i x_i$ belongs to $\operatorname{conv}(X)$ and is a limit point of $\left\{\sum_{i=1}^{n+1} \alpha_i^k x_i^k\right\}$, showing that $\operatorname{conv}(X)$ is compact. **Q.E.D.**

• Note that the convex hull of a closed set need not be closed!

6.253 Convex Analysis and Optimization Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.