LECTURE 4

LECTURE OUTLINE

- Relative interior and closure
- Algebra of relative interiors and closures
- Continuity of convex functions
- Closures of functions

Reading: Section 1.3

RELATIVE INTERIOR

- $\quad x$ is a relative interior point of C, if x is an interior point of C relative to $\operatorname{aff}(C)$.
- $\operatorname{ri}(C)$ denotes the relative interior of C, i.e., the set of all relative interior points of C.
- Line Segment Principle: If C is a convex set, $x \in \operatorname{ri}(C)$ and $\bar{x} \in \operatorname{cl}(C)$, then all points on the line segment connecting x and \bar{x}, except possibly \bar{x}, belong to $\operatorname{ri}(C)$.

- Proof of case where $\bar{x} \in C$: See the figure.
- Proof of case where $\bar{x} \notin C$: Take sequence $\left\{x_{k}\right\} \subset C$ with $x_{k} \rightarrow \bar{x}$. Argue as in the figure.

ADDITIONAL MAJOR RESULTS

- Let C be a nonempty convex set.
(a) $\operatorname{ri}(C)$ is a nonempty convex set, and has the same affine hull as C.
(b) Prolongation Lemma: $x \in \operatorname{ri}(C)$ if and only if every line segment in C having x as one endpoint can be prolonged beyond x without leaving C.

Proof: (a) Assume that $0 \in C$. We choose m linearly independent vectors $z_{1}, \ldots, z_{m} \in C$, where m is the dimension of $\operatorname{aff}(C)$, and we let
$X=\left\{\sum_{i=1}^{m} \alpha_{i} z_{i} \mid \sum_{i=1}^{m} \alpha_{i}<1, \alpha_{i}>0, i=1, \ldots, m\right\}$
(b) $=>$ is clear by the def. of rel. interior. Reverse: take any $\bar{x} \in \operatorname{ri}(C)$; use Line Segment Principle.

OPTIMIZATION APPLICATION

- A concave function $f: \Re^{n} \mapsto \Re$ that attains its minimum over a convex set X at an $x^{*} \in \operatorname{ri}(X)$ must be constant over X.

Proof: (By contradiction) Let $x \in X$ be such that $f(x)>f\left(x^{*}\right)$. Prolong beyond x^{*} the line segment x-to- x^{*} to a point $\bar{x} \in X$. By concavity of f, we have for some $\alpha \in(0,1)$

$$
f\left(x^{*}\right) \geq \alpha f(x)+(1-\alpha) f(\bar{x})
$$

and since $f(x)>f\left(x^{*}\right)$, we must have $f\left(x^{*}\right)>$ $f(\bar{x})$ - a contradiction. Q.E.D.

- Corollary: A nonconstant linear function cannot attain a minimum at an interior point of a convex set.

CALCULUS OF REL. INTERIORS: SUMMARY

- The ri (C) and $\mathrm{cl}(C)$ of a convex set C "differ very little."
- Any set "between" $\operatorname{ri}(C)$ and $\operatorname{cl}(C)$ has the same relative interior and closure.
- The relative interior of a convex set is equal to the relative interior of its closure.
- The closure of the relative interior of a convex set is equal to its closure.
- Relative interior and closure commute with Cartesian product and inverse image under a linear transformation.
- Relative interior commutes with image under a linear transformation and vector sum, but closure does not.
- Neither relative interior nor closure commute with set intersection.

CLOSURE VS RELATIVE INTERIOR

- Proposition:
(a) We have $\operatorname{cl}(C)=\operatorname{cl}(\operatorname{ri}(C))$ and $\operatorname{ri}(C)=\operatorname{ri}(\operatorname{cl}(C))$.
(b) Let \bar{C} be another nonempty convex set. Then the following three conditions are equivalent:
(i) C and \bar{C} have the same rel. interior.
(ii) C and \bar{C} have the same closure.
(iii) $\operatorname{ri}(C) \subset \bar{C} \subset \operatorname{cl}(C)$.

Proof: (a) Since $\operatorname{ri}(C) \subset C$, we have $\operatorname{cl}(\operatorname{ri}(C)) \subset$ $\operatorname{cl}(C)$. Conversely, let $\bar{x} \in \operatorname{cl}(C)$. Let $x \in \operatorname{ri}(C)$. By the Line Segment Principle, we have

$$
\alpha x+(1-\alpha) \bar{x} \in \operatorname{ri}(C), \quad \forall \alpha \in(0,1] .
$$

Thus, \bar{x} is the limit of a sequence that lies in $\operatorname{ri}(C)$, so $\bar{x} \in \operatorname{cl}(\operatorname{ri}(C))$.

The proof of $\mathrm{ri}(C)=\operatorname{ri}(\mathrm{cl}(C))$ is similar.

LINEAR TRANSFORMATIONS

- Let C be a nonempty convex subset of \Re^{n} and let A be an $m \times n$ matrix.
(a) We have $A \cdot \operatorname{ri}(C)=\operatorname{ri}(A \cdot C)$.
(b) We have $A \cdot \operatorname{cl}(C) \subset \operatorname{cl}(A \cdot C)$. Furthermore, if C is bounded, then $A \cdot \operatorname{cl}(C)=\operatorname{cl}(A \cdot C)$.

Proof: (a) Intuition: Spheres within C are mapped onto spheres within $A \cdot C$ (relative to the affine hull).
(b) We have $A \cdot \operatorname{cl}(C) \subset \operatorname{cl}(A \cdot C)$, since if a sequence $\left\{x_{k}\right\} \subset C$ converges to some $x \in \operatorname{cl}(C)$ then the sequence $\left\{A x_{k}\right\}$, which belongs to $A \cdot C$, converges to $A x$, implying that $A x \in \operatorname{cl}(A \cdot C)$.

To show the converse, assuming that C is bounded, choose any $z \in \operatorname{cl}(A \cdot C)$. Then, there exists $\left\{x_{k}\right\} \subset C$ such that $A x_{k} \rightarrow z$. Since C is bounded, $\left\{x_{k}\right\}$ has a subsequence that converges to some $x \in \operatorname{cl}(C)$, and we must have $A x=z$. It follows that $z \in A \cdot \operatorname{cl}(C)$. Q.E.D.

Note that in general, we may have

$$
A \cdot \operatorname{int}(C) \neq \operatorname{int}(A \cdot C), \quad A \cdot \operatorname{cl}(C) \neq \operatorname{cl}(A \cdot C)
$$

INTERSECTIONS AND VECTOR SUMS

- Let C_{1} and C_{2} be nonempty convex sets.
(a) We have

$$
\begin{aligned}
& \operatorname{ri}\left(C_{1}+C_{2}\right)=\operatorname{ri}\left(C_{1}\right)+\operatorname{ri}\left(C_{2}\right) \\
& \operatorname{cl}\left(C_{1}\right)+\operatorname{cl}\left(C_{2}\right) \subset \operatorname{cl}\left(C_{1}+C_{2}\right)
\end{aligned}
$$

If one of C_{1} and C_{2} is bounded, then

$$
\operatorname{cl}\left(C_{1}\right)+\operatorname{cl}\left(C_{2}\right)=\operatorname{cl}\left(C_{1}+C_{2}\right)
$$

(b) We have
$\operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right) \subset \operatorname{ri}\left(C_{1} \cap C_{2}\right), \quad \operatorname{cl}\left(C_{1} \cap C_{2}\right) \subset \operatorname{cl}\left(C_{1}\right) \cap \operatorname{cl}\left(C_{2}\right)$
If $\operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right) \neq \varnothing$, then
$\operatorname{ri}\left(C_{1} \cap C_{2}\right)=\operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right), \quad \operatorname{cl}\left(C_{1} \cap C_{2}\right)=\operatorname{cl}\left(C_{1}\right) \cap \operatorname{cl}\left(C_{2}\right)$
Proof of (a): $C_{1}+C_{2}$ is the result of the linear transformation $\left(x_{1}, x_{2}\right) \mapsto x_{1}+x_{2}$.

- Counterexample for (b):

$$
\begin{array}{ll}
C_{1}=\{x \mid x \leq 0\}, & C_{2}=\{x \mid x \geq 0\} \\
C_{1}=\{x \mid x<0\}, & C_{2}=\{x \mid x>0\}
\end{array}
$$

CARTESIAN PRODUCT - GENERALIZATION

- Let C be convex set in \Re^{n+m}. For $x \in \Re^{n}$, let

$$
C_{x}=\{y \mid(x, y) \in C\}
$$

and let

$$
D=\left\{x \mid C_{x} \neq \varnothing\right\}
$$

Then

$$
\operatorname{ri}(C)=\left\{(x, y) \mid x \in \operatorname{ri}(D), y \in \operatorname{ri}\left(C_{x}\right)\right\}
$$

Proof: Since D is projection of C on x-axis,
$\operatorname{ri}(D)=\left\{x \mid\right.$ there exists $y \in \Re^{m}$ with $\left.(x, y) \in \operatorname{ri}(C)\right\}$,
so that

$$
\operatorname{ri}(C)=\cup_{x \in \operatorname{ri}(D)}\left(M_{x} \cap \operatorname{ri}(C)\right)
$$

where $M_{x}=\left\{(x, y) \mid y \in \Re^{m}\right\}$. For every $x \in$ $\operatorname{ri}(D)$, we have
$M_{x} \cap \operatorname{ri}(C)=\operatorname{ri}\left(M_{x} \cap C\right)=\left\{(x, y) \mid y \in \operatorname{ri}\left(C_{x}\right)\right\}$.
Combine the preceding two equations. Q.E.D.

CONTINUITY OF CONVEX FUNCTIONS

- If $f: \Re^{n} \mapsto \Re$ is convex, then it is continuous.

Proof: We will show that f is continuous at 0 . By convexity, f is bounded within the unit cube by the max value of f over the corners of the cube.

Consider sequence $x_{k} \rightarrow 0$ and the sequences $y_{k}=x_{k} /\left\|x_{k}\right\|_{\infty}, z_{k}=-x_{k} /\left\|x_{k}\right\|_{\infty}$. Then

$$
\begin{gathered}
f\left(x_{k}\right) \leq\left(1-\left\|x_{k}\right\|_{\infty}\right) f(0)+\left\|x_{k}\right\|_{\infty} f\left(y_{k}\right) \\
f(0) \leq \frac{\left\|x_{k}\right\|_{\infty}}{\left\|x_{k}\right\|_{\infty}+1} f\left(z_{k}\right)+\frac{1}{\left\|x_{k}\right\|_{\infty}+1} f\left(x_{k}\right)
\end{gathered}
$$

Take limit as $k \rightarrow \infty$. Since $\left\|x_{k}\right\|_{\infty} \rightarrow 0$, we have $\limsup _{k \rightarrow \infty}\left\|x_{k}\right\|_{\infty} f\left(y_{k}\right) \leq 0, \limsup _{k \rightarrow \infty} \frac{\left\|x_{k}\right\|_{\infty}}{\left\|x_{k}\right\|_{\infty}+1} f\left(z_{k}\right) \leq 0$ so $f\left(x_{k}\right) \rightarrow f(0)$. Q.E.D.

- Extension to continuity over ri($\operatorname{dom}(f))$.

CLOSURES OF FUNCTIONS

- The closure of a function $f: X \mapsto[-\infty, \infty]$ is the function cl $f: \Re^{n} \mapsto[-\infty, \infty]$ with

$$
\operatorname{epi}(\operatorname{cl} f)=\operatorname{cl}(\operatorname{epi}(f))
$$

- The convex closure of f is the function cll f with

$$
\operatorname{epi}(\check{\operatorname{cl}} f)=\operatorname{cl}(\operatorname{conv}(\operatorname{epi}(f)))
$$

- Proposition: For any $f: X \mapsto[-\infty, \infty]$

$$
\inf _{x \in X} f(x)=\inf _{x \in \Re^{n}}(\operatorname{cl} f)(x)=\inf _{x \in \Re^{n}}(\check{c l} f)(x)
$$

Also, any vector that attains the infimum of f over X also attains the infimum of $\mathrm{cl} f$ and $\mathrm{cl} f$.

- Proposition: For any $f: X \mapsto[-\infty, \infty]$:
(a) $\operatorname{cl} f($ or $c \mathrm{cl} f)$ is the greatest closed (or closed convex, resp.) function majorized by f.
(b) If f is convex, then $\mathrm{cl} f$ is convex, and it is proper if and only if f is proper. Also,

$$
(\operatorname{cl} f)(x)=f(x), \quad \forall x \in \operatorname{ri}(\operatorname{dom}(f))
$$

and if $x \in \operatorname{ri}(\operatorname{dom}(f))$ and $y \in \operatorname{dom}(\operatorname{cl} f)$,

$$
(\operatorname{cl} f)(y)=\lim _{\alpha \downarrow 0} f(y+\alpha(x-y))
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

