LECTURE 4

LECTURE OUTLINE

- Relative interior and closure
- Algebra of relative interiors and closures
- Continuity of convex functions
- Closures of functions

Reading: Section 1.3

RELATIVE INTERIOR

• x is a relative interior point of C, if x is an interior point of C relative to aff(C).

• ri(C) denotes the *relative interior of* C, i.e., the set of all relative interior points of C.

• Line Segment Principle: If C is a convex set, $x \in ri(C)$ and $\overline{x} \in cl(C)$, then all points on the line segment connecting x and \overline{x} , except possibly \overline{x} , belong to ri(C).

• Proof of case where $\overline{x} \in C$: See the figure.

• Proof of case where $\overline{x} \notin C$: Take sequence $\{x_k\} \subset C$ with $x_k \to \overline{x}$. Argue as in the figure.

ADDITIONAL MAJOR RESULTS

- Let C be a nonempty convex set.
 - (a) ri(C) is a nonempty convex set, and has the same affine hull as C.
 - (b) **Prolongation Lemma:** $x \in ri(C)$ if and only if every line segment in C having x as one endpoint can be prolonged beyond x without leaving C.

Proof: (a) Assume that $0 \in C$. We choose m linearly independent vectors $z_1, \ldots, z_m \in C$, where m is the dimension of aff(C), and we let

$$X = \left\{ \sum_{i=1}^{m} \alpha_i z_i \ \Big| \ \sum_{i=1}^{m} \alpha_i < 1, \ \alpha_i > 0, \ i = 1, \dots, m \right\}$$

(b) => is clear by the def. of rel. interior. Reverse: take any $\overline{x} \in ri(C)$; use Line Segment Principle.

OPTIMIZATION APPLICATION

• A concave function $f : \Re^n \mapsto \Re$ that attains its minimum over a convex set X at an $x^* \in \operatorname{ri}(X)$ must be constant over X.

Proof: (By contradiction) Let $x \in X$ be such that $f(x) > f(x^*)$. Prolong beyond x^* the line segment x-to- x^* to a point $\overline{x} \in X$. By concavity of f, we have for some $\alpha \in (0, 1)$

$$f(x^*) \ge \alpha f(x) + (1 - \alpha) f(\overline{x}),$$

and since $f(x) > f(x^*)$, we must have $f(x^*) > f(\overline{x})$ - a contradiction. Q.E.D.

• **Corollary:** A nonconstant linear function cannot attain a minimum at an interior point of a convex set.

4

CALCULUS OF REL. INTERIORS: SUMMARY

- The ri(C) and cl(C) of a convex set C "differ very little."
 - Any set "between" ri(C) and cl(C) has the same relative interior and closure.
 - The relative interior of a convex set is equal to the relative interior of its closure.
 - The closure of the relative interior of a convex set is equal to its closure.

• Relative interior and closure commute with Cartesian product and inverse image under a linear transformation.

• Relative interior commutes with image under a linear transformation and vector sum, but closure does not.

• Neither relative interior nor closure commute with set intersection.

CLOSURE VS RELATIVE INTERIOR

• *Proposition*:

- (a) We have $\operatorname{cl}(C) = \operatorname{cl}(\operatorname{ri}(C))$ and $\operatorname{ri}(C) = \operatorname{ri}(\operatorname{cl}(C))$.
- (b) Let \overline{C} be another nonempty convex set. Then the following three conditions are equivalent:
 - (i) C and \overline{C} have the same rel. interior.
 - (ii) C and \overline{C} have the same closure.
 - (iii) $\operatorname{ri}(C) \subset \overline{C} \subset \operatorname{cl}(C)$.

Proof: (a) Since $\operatorname{ri}(C) \subset C$, we have $\operatorname{cl}(\operatorname{ri}(C)) \subset \operatorname{cl}(C)$. Conversely, let $\overline{x} \in \operatorname{cl}(C)$. Let $x \in \operatorname{ri}(C)$. By the Line Segment Principle, we have

$$\alpha x + (1 - \alpha)\overline{x} \in \operatorname{ri}(C), \quad \forall \ \alpha \in (0, 1].$$

Thus, \overline{x} is the limit of a sequence that lies in $\operatorname{ri}(C)$, so $\overline{x} \in \operatorname{cl}(\operatorname{ri}(C))$.

The proof of $\operatorname{ri}(C) = \operatorname{ri}(\operatorname{cl}(C))$ is similar.

LINEAR TRANSFORMATIONS

• Let C be a nonempty convex subset of \Re^n and let A be an $m \times n$ matrix.

- (a) We have $A \cdot \operatorname{ri}(C) = \operatorname{ri}(A \cdot C)$.
- (b) We have $A \cdot \operatorname{cl}(C) \subset \operatorname{cl}(A \cdot C)$. Furthermore, if C is bounded, then $A \cdot \operatorname{cl}(C) = \operatorname{cl}(A \cdot C)$.

Proof: (a) Intuition: Spheres within C are mapped onto spheres within $A \cdot C$ (relative to the affine hull).

(b) We have $A \cdot \operatorname{cl}(C) \subset \operatorname{cl}(A \cdot C)$, since if a sequence $\{x_k\} \subset C$ converges to some $x \in \operatorname{cl}(C)$ then the sequence $\{Ax_k\}$, which belongs to $A \cdot C$, converges to Ax, implying that $Ax \in \operatorname{cl}(A \cdot C)$.

To show the converse, assuming that C is bounded, choose any $z \in cl(A \cdot C)$. Then, there exists $\{x_k\} \subset C$ such that $Ax_k \to z$. Since C is bounded, $\{x_k\}$ has a subsequence that converges to some $x \in cl(C)$, and we must have Ax = z. It follows that $z \in A \cdot cl(C)$. **Q.E.D.**

Note that in general, we may have

 $A \cdot \operatorname{int}(C) \neq \operatorname{int}(A \cdot C), \qquad A \cdot \operatorname{cl}(C) \neq \operatorname{cl}(A \cdot C)$

INTERSECTIONS AND VECTOR SUMS

Let C₁ and C₂ be nonempty convex sets.
(a) We have

 $\operatorname{ri}(C_1 + C_2) = \operatorname{ri}(C_1) + \operatorname{ri}(C_2),$ $\operatorname{cl}(C_1) + \operatorname{cl}(C_2) \subset \operatorname{cl}(C_1 + C_2)$ If one of C_1 and C_2 is bounded, then $\operatorname{cl}(C_1) + \operatorname{cl}(C_2) = \operatorname{cl}(C_1 + C_2)$ (b) We have $\operatorname{ri}(C_1) \cap \operatorname{ri}(C_2) \subset \operatorname{ri}(C_1 \cap C_2), \ \operatorname{cl}(C_1 \cap C_2) \subset \operatorname{cl}(C_1) \cap \operatorname{cl}(C_2)$

If $\operatorname{ri}(C_1) \cap \operatorname{ri}(C_2) \neq \emptyset$, then

 $ri(C_1 \cap C_2) = ri(C_1) \cap ri(C_2), \ cl(C_1 \cap C_2) = cl(C_1) \cap cl(C_2)$

Proof of (a): $C_1 + C_2$ is the result of the linear transformation $(x_1, x_2) \mapsto x_1 + x_2$.

• Counterexample for (b):

$$C_{1} = \{x \mid x \leq 0\}, \qquad C_{2} = \{x \mid x \geq 0\}$$
$$C_{1} = \{x \mid x < 0\}, \qquad C_{2} = \{x \mid x > 0\}$$

CARTESIAN PRODUCT - GENERALIZATION

• Let C be convex set in \Re^{n+m} . For $x \in \Re^n$, let

$$C_x = \{ y \mid (x, y) \in C \},\$$

and let

$$D = \{ x \mid C_x \neq \emptyset \}.$$

Then

$$\operatorname{ri}(C) = \{(x, y) \mid x \in \operatorname{ri}(D), y \in \operatorname{ri}(C_x)\}.$$

Proof: Since D is projection of C on x-axis, $ri(D) = \{x \mid \text{there exists } y \in \Re^m \text{ with } (x, y) \in ri(C)\},$ so that

$$\operatorname{ri}(C) = \bigcup_{x \in \operatorname{ri}(D)} \Big(M_x \cap \operatorname{ri}(C) \Big),$$

where $M_x = \{(x, y) \mid y \in \Re^m\}$. For every $x \in \operatorname{ri}(D)$, we have

$$M_x \cap \operatorname{ri}(C) = \operatorname{ri}(M_x \cap C) = \{(x, y) \mid y \in \operatorname{ri}(C_x)\}.$$

Combine the preceding two equations. Q.E.D.

CONTINUITY OF CONVEX FUNCTIONS

• If $f: \Re^n \mapsto \Re$ is convex, then it is continuous.

Proof: We will show that f is continuous at 0. By convexity, f is bounded within the unit cube by the max value of f over the corners of the cube.

Consider sequence $x_k \to 0$ and the sequences $y_k = x_k / ||x_k||_{\infty}, z_k = -x_k / ||x_k||_{\infty}$. Then

$$f(x_k) \le (1 - \|x_k\|_{\infty})f(0) + \|x_k\|_{\infty}f(y_k)$$

$$f(0) \le \frac{\|x_k\|_{\infty}}{\|x_k\|_{\infty} + 1} f(z_k) + \frac{1}{\|x_k\|_{\infty} + 1} f(x_k)$$

Take limit as $k \to \infty$. Since $||x_k||_{\infty} \to 0$, we have $\limsup_{k \to \infty} ||x_k||_{\infty} f(y_k) \leq 0, \quad \limsup_{k \to \infty} \frac{||x_k||_{\infty}}{||x_k||_{\infty} + 1} f(z_k) \leq 0$ so $f(x_k) \to f(0)$. **Q.E.D.**

• Extension to continuity over ri(dom(f)).

CLOSURES OF FUNCTIONS

• The closure of a function $f: X \mapsto [-\infty, \infty]$ is the function $\operatorname{cl} f: \Re^n \mapsto [-\infty, \infty]$ with

$$\operatorname{epi}(\operatorname{cl} f) = \operatorname{cl}(\operatorname{epi}(f))$$

- The convex closure of f is the function $\check{cl} f$ with $\operatorname{epi}(\check{cl} f) = \operatorname{cl}(\operatorname{conv}(\operatorname{epi}(f)))$
- Proposition: For any $f: X \mapsto [-\infty, \infty]$

$$\inf_{x \in X} f(x) = \inf_{x \in \Re^n} (\operatorname{cl} f)(x) = \inf_{x \in \Re^n} (\operatorname{cl} f)(x).$$

Also, any vector that attains the infimum of f over X also attains the infimum of cl f and cl f.

- Proposition: For any $f: X \mapsto [-\infty, \infty]$:
 - (a) $\operatorname{cl} f$ (or $\operatorname{cl} f$) is the greatest closed (or closed convex, resp.) function majorized by f.
 - (b) If f is convex, then $\operatorname{cl} f$ is convex, and it is proper if and only if f is proper. Also,

 $(\operatorname{cl} f)(x) = f(x), \quad \forall x \in \operatorname{ri}(\operatorname{dom}(f)),$

and if $x \in \operatorname{ri}(\operatorname{dom}(f))$ and $y \in \operatorname{dom}(\operatorname{cl} f)$,

$$(\operatorname{cl} f)(y) = \lim_{\alpha \downarrow 0} f(y + \alpha(x - y)).$$

6.253 Convex Analysis and Optimization Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.