
LECTURE 5

LECTURE OUTLINE

• Recession cones and lineality space

• Directions of recession of convex functions

• Local and global minima

• Existence of optimal solutions

Reading: Section 1.4, 3.1, 3.2

All figures are courtesy of Athena Scientific, and are used with permission.
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RECESSION CONE OF A CONVEX SET

• Given a nonempty convex set C, a vector d is
a direction of recession if starting at any x in C
and going indefinitely along d, we never cross the
relative boundary of C to points outside C:

x + αd C, x C, α 0⌘  ⌘  ≥

x

C

0

d

x + d

Recession Cone RC

• Recession cone of C (denoted by RC): The set
of all directions of recession.

• RC is a cone containing the origin.
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RECESSION CONE THEOREM

• Let C be a nonempty closed convex set.

(a) The recession cone RC is a closed convex
cone.

(b) A vector d belongs to RC if and only if there
exists some vector x ⌘ C such that x+αd ⌘
C for all α ≥ 0.

(c) RC contains a nonzero direction if and only
if C is unbounded.

(d) The recession cones of C and ri(C) are equal.

(e) If D is another closed convex set such that
C ⌫D = Ø, we have

RC✏D = RC ⌫RD

More generally, for any collection of closed
convex sets Ci, i ⌘ I, where I is an arbitrary
index set and ⌫i ICi is nonempty, we have⌦

R✏i2ICi = ⌫i⌦IRCi

✓
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PROOF OF PART (B)
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• Let d = 0 be such that there exists a vector
x ⌘ C with x + αd ⌘ C for all α ≥ 0. We fix
x ⌘ C and α > 0, and we show that x + αd ⌘ C.
By scaling d, it is enough to show that x + d ⌘ C.

For k = 1, 2, . . ., let

(z
zk = x + kd, dk = k − x)

�zk − x
�d��

We have

dk �zk − x� d x − x �zk x x x
= + ,

− � −
d zk x d zk x zk x

⌅ 1,
� � � − � � � � − � � − � �zk − x

⌅ 0,
�

so dk → d and x + dk → x + d. Use the convexity
and closedness of C to conclude that x + d ⌘ C.

✓
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LINEALITY SPACE

• The lineality space of a convex set C, denoted by
LC , is the subspace of vectors d such that d ⌘ RC

and −d ⌘ RC :

LC = RC ⌫ (−RC)

• If d ⌘ LC , the entire line defined by d is con-
tained in C, starting at any point of C.

• Decomposition of a Convex Set: Let C be a
nonempty convex subset of �n. Then,

C = LC + (C ⌫ L⊥C).

• Allows us to prove properties of C on C ⌫ L⊥C
and extend them to C.

• True also if LC is replaced by a subspace S ⌦
LC .

x

C

S

S

C  S

0
d

z
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DIRECTIONS OF RECESSION OF A FN

• We aim to characterize directions of monotonic
decrease of convex functions.

• Some basic geometric observations:

− The “horizontal directions” in the recession
cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

− Along these directions the level sets x |
f(x) ⌥ ⇤ are

⇤
⌅

unbounded and f is mono-
tonically nondecreasing.

• These are the directions of recession of f .

!

epi(f)

Level Set V! = {x | f(x) " !}

“Slice” {(x,!) | f(x) " !}

Recession
Cone of f

0
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RECESSION CONE OF LEVEL SETS

• Proposition: Let f : �n → (−⇣,⇣] be a closed
proper⇤ convex function⌅ and consider the level sets
V⇥ = x | f(x) ⌥ ⇤ , where ⇤ is a scalar. Then:

(a) All the nonempty level sets V⇥ have the same
recession cone:

RV =
⇤
d | (d, 0) ⌘ Repi(f)

(b) If one nonempty level set V⇥ is compact,

⌅

then
all level sets are compact.

Proof: (a) Just translate to math the fact that

RV = the “horizontal” directions of recession of epi(f)

(b) Follows from (a).

◆
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DESCENT BEHAVIOR OF A CONVEX FN
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f(x)

f(x)

f(x)

f(x)

f(x)

f(x)

f(x + d)

f(x + d) f(x + d)

f(x + d)

f(x + d)f(x + d)

rf (d) = 0

rf (d) = 0 rf (d) = 0

rf (d) < 0

rf (d) > 0 rf (d) > 0

• y is a direction of recession in (a)-(d).

• This behavior is independent of the starting
point x, as long as x ⌘ dom(f).
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RECESSION CONE OF A CONVEX FUNCTION

• For a closed proper convex function f : �n →
(−⇣,⇣], the (common) recession cone of the nonempty
level sets V⇥ = x | f(x) ⌥ ⇤ , ⇤ ⌘ �, is the re-
cession cone of f , and is denoted by Rf .

◆
⇤ ⌅

0

Recession Cone Rf

Level Sets of f

• Terminology:

− d ⌘ Rf : a direction of recession of f .

− Lf = Rf ⌫ (−Rf ): the lineality space of f .

− d ⌘ Lf : a direction of constancy of f .

• Example: For the pos. semidefinite quadratic

f(x) = x�Qx + a�x + b,

the recession cone and constancy space are

Rf = d Qd = 0, a⇧d 0 , Lf = d Qd = 0, a⇧d = 0{ | ⌃ } { | }
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RECESSION FUNCTION

• Function rf : �n → (−⇣,⇣] whose epigraph
is Repi(f) is the recession function of f .

• Characterizes the recession cone:

Rf =
⇤
d | rf (d) ⌃ 0

⌅
, Lf =

⇤
d | rf (d) = rf (−d) = 0

since Rf = {(d, 0) ⌘ Repi(f) .

⌅

}
• Can be shown that

f(x + αd)− f(x) f(x + αd)
rf (d) = sup = lim

− f(x)

α αα>0

⌅⌃ α

• Thus rf (d) is the “asymptotic slope” of f in the
direction d. In fact,

rf (d) = lim
α⌃ 

∇f(x + αd)�d,  x, d ⌘ �n

if f is differentiable.

• Calculus of recession functions:

rf1+···+fm(d) = rf1(d) + · · · + rfm(d),

rsupi2I fi(d) = sup rfi(d)
i I

◆

⌦
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LOCAL AND GLOBAL MINIMA

• Consider minimizing f : �n → (−⇣,⇣] over a
set X ⌦ �n

• x is feasible if x ⌘ X ⌫ dom(f)

• x⇤ is a (global) minimum of f over X if x⇤ is
feasible and f(x⇤) = infx X f(x)⌦

• x⇤ is a local minimum of f over X if x⇤ is a
minimum of f over a set X ⌫ {x | �x− x⇤� ⌥ ⇧}
Proposition: If X is convex and f is convex,
then:

(a) A local minimum of f over X is also a global
minimum of f over X.

(b) If f is strictly convex, then there exists at
most one global minimum of f over X.

◆

f(x)

f(x) + (1  )f(x)

f
�
x + (1  )x

⇥

0 xx x
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EXISTENCE OF OPTIMAL SOLUTIONS

• The set of minima of a proper f : �n →
(−⇣,⇣] is the intersection of its nonempty level
sets.

• The set of minima of f is nonempty and com-
pact if the level sets of f are compact.

• (An Extension of the) Weierstrass’ Theo-
rem: The set of minima of f over X is nonempty
and compact if X is closed, f is lower semicontin-
uous over X, and one of the following conditions
holds:

(1) X is bounded.

(2) Some set
⇤
x ⌘ X | f(x) ⌥ ⇤

⌅
is nonempty

and bounded.

(3) For every sequence {xk} ⌦ X s. t. �xk� →
⇣, we have limk f(xk) =⇣. (Coercivity⌃ 
property).

Proof: In all cases the level sets of f ⌫X are
compact. Q.E.D.

◆
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EXISTENCE OF SOLUTIONS - CONVEX CASE

• Weierstrass’ Theorem specialized to con-
vex functions: Let X be a closed convex subset
of �n, and let f : �n → (−⇣,⇣] be closed con-
vex with X ⌫ dom(f) = Ø. The set of minima of
f over X is nonempty and compact if and only
if X and f have no common nonzero direction of
recession.

Proof: Let f⇤ = infx f⌦X (x) and note that f⇤ <
⇣ since X ⌫ dom(f) = Ø. Let {⇤k} be a scalar
sequence with ⇤k ↓ f⇤, and consider the sets

Vk =
⇤
x | f(x) ⌥ ⇤k

⌅
.

Then the set of minima of f over X is

X⇤ = ⌫ k=1(X ⌫ Vk).

The sets X ⌫ Vk are nonempty and have RX ⌫Rf

as their common recession cone, which is also the
recession cone of X⇤, when X⇤ = Ø. It follows
that X⇤ is nonempty and compact if and only if
RX ⌫Rf = {0}. Q.E.D.

◆
✓

✓

✓
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EXISTENCE OF SOLUTION, SUM OF FNS

• Let fi : �n → (−⇣,⇣], i = 1, . . . ,m, be closed
proper convex functions such that the function

f = f1 + · · · + fm

is proper. Assume that a single function fi sat-
isfies rfi(d) = ⇣ for all d = 0. Then the set of
minima of f is nonempty and compact.

• Proof:�We have rf (d) = ⇣ for all d = 0 since
rf (d) = m

i=1 rfi(d). Hence f has no nonzero di-
rections of recession. Q.E.D.

• True also for f = max{f1, . . . , fm}.
• Example of application: If one of the fi is
positive definite quadratic, the set of minima of
the sum f is nonempty and compact.

• Also f has a unique minimum because the pos-
itive definite quadratic is strictly convex, which
makes f strictly convex.

◆

✓

✓
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