LECTURE 6

LECTURE OUTLINE

- Nonemptiness of closed set intersections
 - Simple version
 - More complex version
- Existence of optimal solutions
- Preservation of closure under linear transformation
- Hyperplanes

All figures are courtesy of Athena Scientific, and are used with permission.

ROLE OF CLOSED SET INTERSECTIONS I

• A fundamental question: Given a sequence of nonempty closed sets $\{C_k\}$ in \Re^n with $C_{k+1} \subset C_k$ for all k, when is $\bigcap_{k=0}^{\infty} C_k$ nonempty?

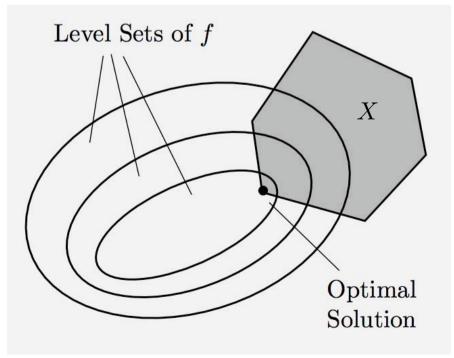
• Set intersection theorems are significant in at least three major contexts, which we will discuss in what follows:

Does a function $f: \Re^n \mapsto (-\infty, \infty]$ attain a minimum over a set X?

This is true if and only if

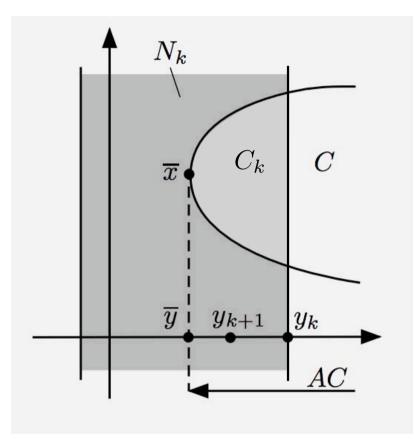
Intersection of nonempty $\{x \in X \mid f(x) \le \gamma_k\}$

is nonempty.



ROLE OF CLOSED SET INTERSECTIONS II

If C is closed and A is a matrix, is AC closed?



- If C_1 and C_2 are closed, is $C_1 + C_2$ closed?
 - This is a special case.

– Write

$$C_1 + C_2 = A(C_1 \times C_2),$$

where $A(x_1, x_2) = x_1 + x_2$.

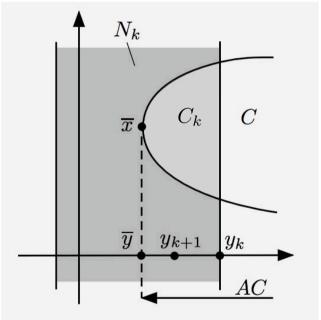
CLOSURE UNDER LINEAR TRANSFORMATION

• Let C be a nonempty closed convex, and let A be a matrix with nullspace N(A). Then AC is closed if $R_C \cap N(A) = \{0\}$.

Proof: Let $\{y_k\} \subset AC$ with $y_k \to \overline{y}$. Define the nested sequence $C_k = C \cap N_k$, where

 $N_k = \{x \mid Ax \in W_k\}, \quad W_k = \{z \mid \|z - \overline{y}\| \le \|y_k - \overline{y}\|\}$

We have $R_{N_k} = N(A)$, so C_k is compact, and $\{C_k\}$ has nonempty intersection. **Q.E.D.**



• A special case: $C_1 + C_2$ is closed if C_1 , C_2 are closed and one of the two is compact. [Write $C_1 + C_2 = A(C_1 \times C_2)$, where $A(x_1, x_2) = x_1 + x_2$.]

• **Related theorem:** AX is closed if X is polyhedral. To be shown later by a more refined method.

ROLE OF CLOSED SET INTERSECTIONS III

• Let $F: \Re^{n+m} \mapsto (-\infty, \infty]$ be a closed proper convex function, and consider

$$f(x) = \inf_{z \in \Re^m} F(x, z)$$

- If F(x, z) is closed, is f(x) closed?
 Critical question in duality theory.
- 1st fact: If F is convex, then f is also convex.
- 2nd fact:

$$P(\operatorname{epi}(F)) \subset \operatorname{epi}(f) \subset \operatorname{cl}(P(\operatorname{epi}(F))),$$

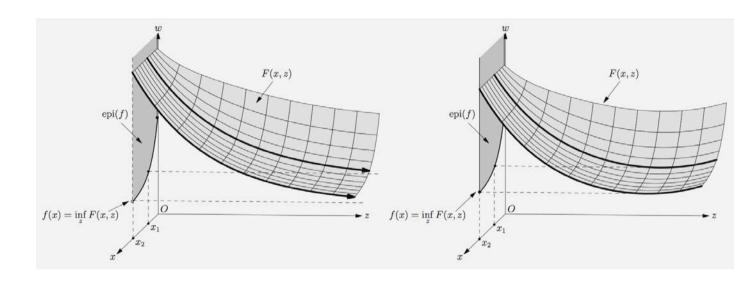
where $P(\cdot)$ denotes projection on the space of (x, w), i.e., for any subset S of \Re^{n+m+1} , $P(S) = \{(x, w) \mid (x, z, w) \in S\}$.

• Thus, if F is closed and there is structure guaranteeing that the projection preserves closedness, then f is closed.

• ... but convexity and closedness of F does not guarantee closedness of f.

PARTIAL MINIMIZATION: VISUALIZATION

• Connection of preservation of closedness under partial minimization and attainment of infimum over z for fixed x.



• Counterexample: Let

$$F(x,z) = \begin{cases} e^{-\sqrt{xz}} & \text{if } x \ge 0, \ z \ge 0, \\ \infty & \text{otherwise.} \end{cases}$$

• F convex and closed, but

$$f(x) = \inf_{z \in \Re} F(x, z) = \begin{cases} 0 & \text{if } x > 0, \\ 1 & \text{if } x = 0, \\ \infty & \text{if } x < 0, \end{cases}$$

is not closed.

PARTIAL MINIMIZATION THEOREM

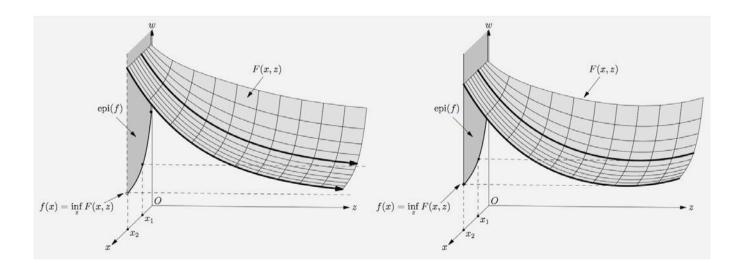
• Let $F : \Re^{n+m} \mapsto (-\infty, \infty]$ be a closed proper convex function, and consider $f(x) = \inf_{z \in \Re^m} F(x, z)$.

• Every set intersection theorem yields a closedness result. The simplest case is the following:

• Preservation of Closedness Under Compactness: If there exist $\overline{x} \in \Re^n$, $\overline{\gamma} \in \Re$ such that the set

$$\left\{z \mid F(\overline{x}, z) \le \overline{\gamma}\right\}$$

is nonempty and compact, then f is convex, closed, and proper. Also, for each $x \in \text{dom}(f)$, the set of minima of $F(x, \cdot)$ is nonempty and compact.



MORE REFINED ANALYSIS - A SUMMARY

- We noted that there is a common mathematical root to three basic questions:
 - Existence of of solutions of convex optimization problems
 - Preservation of closedness of convex sets under a linear transformation
 - Preservation of closedness of convex functions under partial minimization

• The common root is the question of nonemptiness of intersection of a nested sequence of closed sets

• The preceding development in this lecture resolved this question by assuming that all the sets in the sequence are compact

• A more refined development makes instead various assumptions about the directions of recession and the lineality space of the sets in the sequence

• Once the appropriately refined set intersection theory is developed, sharper results relating to the three questions can be obtained

• The remaining slides up to hyperplanes summarize this development as an aid for self-study using Sections 1.4.2, 1.4.3, and Sections 3.2, 3.3

ASYMPTOTIC SEQUENCES

• Given nested sequence $\{C_k\}$ of closed convex sets, $\{x_k\}$ is an *asymptotic sequence* if

 $x_k \in C_k, \qquad x_k \neq 0, \qquad k = 0, 1, \dots$

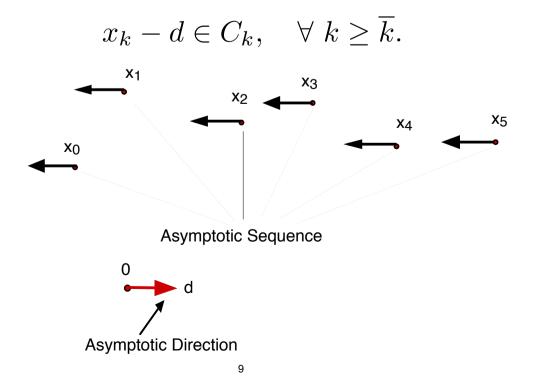
$$||x_k|| \to \infty, \qquad \frac{x_k}{||x_k||} \to \frac{d}{||d||}$$

where d is a nonzero common direction of recession of the sets C_k .

• As a special case we define asymptotic sequence of a closed convex set C (use $C_k \equiv C$).

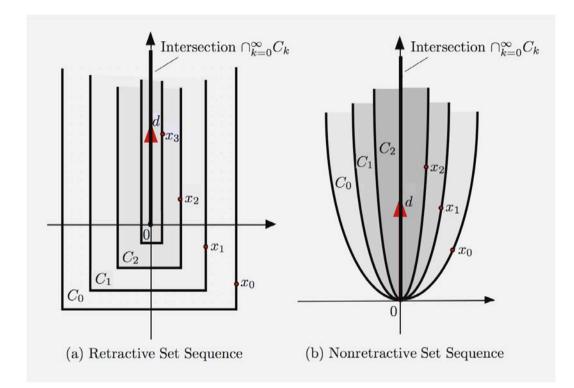
• Every unbounded $\{x_k\}$ with $x_k \in C_k$ has an asymptotic subsequence.

• $\{x_k\}$ is called *retractive* if for some \overline{k} , we have



RETRACTIVE SEQUENCES

• A nested sequence $\{C_k\}$ of closed convex sets is *retractive* if all its asymptotic sequences are retractive.



• A closed halfspace (viewed as a sequence with identical components) is retractive.

• Intersections and Cartesian products of retractive set sequences are retractive.

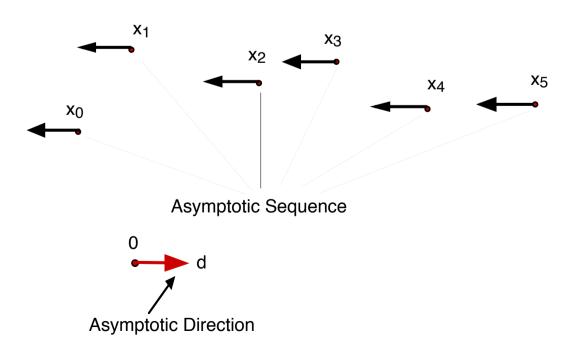
• A polyhedral set is retractive. Also the vector sum of a convex compact set and a retractive convex set is retractive.

• Nonpolyhedral cones and level sets of quadratic functions need not be retractive.

SET INTERSECTION THEOREM I

Proposition: If $\{C_k\}$ is retractive, then $\bigcap_{k=0}^{\infty} C_k$ is nonempty.

- Key proof ideas:
 - (a) The intersection $\bigcap_{k=0}^{\infty} C_k$ is empty iff the sequence $\{x_k\}$ of minimum norm vectors of C_k is unbounded (so a subsequence is asymptotic).
 - (b) An asymptotic sequence $\{x_k\}$ of minimum norm vectors cannot be retractive, because such a sequence eventually gets closer to 0 when shifted opposite to the asymptotic direction.



SET INTERSECTION THEOREM II

Proposition: Let $\{C_k\}$ be a nested sequence of nonempty closed convex sets, and X be a retractive set such that all the sets $\overline{C}_k = X \cap C_k$ are nonempty. Assume that

$$R_X \cap R \subset L$$
,

where

$$R = \bigcap_{k=0}^{\infty} R_{C_k}, \qquad L = \bigcap_{k=0}^{\infty} L_{C_k}$$

Then $\{\overline{C}_k\}$ is retractive and $\bigcap_{k=0}^{\infty} \overline{C}_k$ is nonempty.

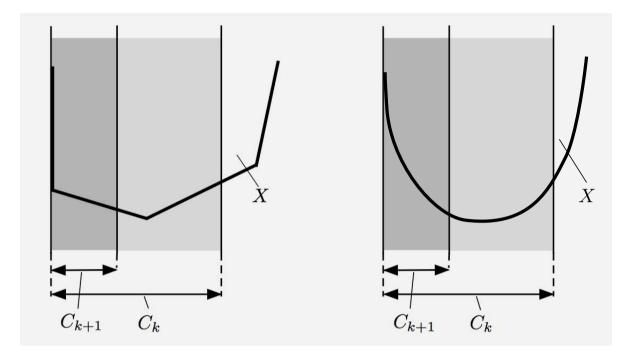
- Special cases:
 - $X = \Re^n, R = L$ ("cylindrical" sets C_k)
 - $R_X \cap R = \{0\} \text{ (no nonzero common recession direction of } X \text{ and } \cap_k C_k \text{)}$

Proof: The set of common directions of recession of \overline{C}_k is $R_X \cap R$. For any asymptotic sequence $\{x_k\}$ corresponding to $d \in R_X \cap R$:

(1) $x_k - d \in C_k$ (because $d \in L$)

(2) $x_k - d \in X$ (because X is retractive) So $\{\overline{C}_k\}$ is retractive.

NEED TO ASSUME THAT X IS RETRACTIVE



Consider $\cap_{k=0}^{\infty} \overline{C}_k$, with $\overline{C}_k = X \cap C_k$

- The condition $R_X \cap R \subset L$ holds
- In the figure on the left, X is polyhedral.

• In the figure on the right, X is nonpolyhedral and nonretrative, and

$$\cap_{k=0}^{\infty} \overline{C}_k = \emptyset$$

LINEAR AND QUADRATIC PROGRAMMING

• Theorem: Let

 $f(x) = x'Qx + c'x, \quad X = \{x \mid a'_j x + b_j \le 0, \ j = 1, \dots, r\}$

where Q is symmetric positive semidefinite. If the minimal value of f over X is finite, there exists a minimum of f over X.

Proof: (Outline) Write

Set of Minima = $\bigcap_{k=0}^{\infty} (X \cap \{x \mid x'Qx + c'x \leq \gamma_k\})$

with

$$\gamma_k \downarrow f^* = \inf_{x \in X} f(x).$$

Verify the condition $R_X \cap R \subset L$ of the preceding set intersection theorem, where R and L are the sets of common recession and lineality directions of the sets

$$\{x \mid x'Qx + c'x \le \gamma_k\}$$

Q.E.D.

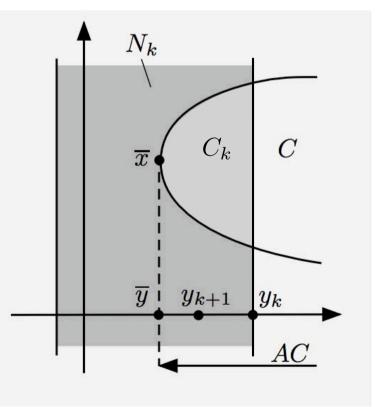
CLOSURE UNDER LINEAR TRANSFORMATION

- Let C be a nonempty closed convex, and let A be a matrix with nullspace N(A).
 - (a) AC is closed if $R_C \cap N(A) \subset L_C$.
 - (b) $A(X \cap C)$ is closed if X is a retractive set and

$$R_X \cap R_C \cap N(A) \subset L_C,$$

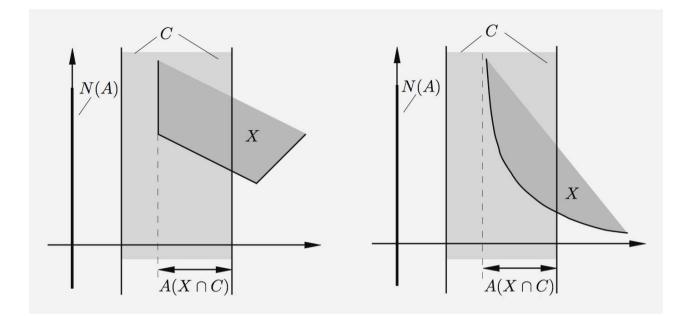
Proof: (Outline) Let $\{y_k\} \subset AC$ with $y_k \to \overline{y}$. We prove $\bigcap_{k=0}^{\infty} C_k \neq \emptyset$, where $C_k = C \cap N_k$, and

 $N_k = \{x \mid Ax \in W_k\}, \quad W_k = \{z \mid \|z - \overline{y}\| \le \|y_k - \overline{y}\|\}$



• Special Case: AX is closed if X is polyhedral.

NEED TO ASSUME THAT X IS RETRACTIVE



Consider closedness of $A(X \cap C)$

• In both examples the condition

 $R_X \cap R_C \cap N(A) \subset L_C$

is satisfied.

• However, in the example on the right, X is not retractive, and the set $A(X \cap C)$ is not closed.

CLOSEDNESS OF VECTOR SUMS

• Let C_1, \ldots, C_m be nonempty closed convex subsets of \Re^n such that the equality $d_1 + \cdots + d_m = 0$ for some vectors $d_i \in R_{C_i}$ implies that $d_i = 0$ for all $i = 1, \ldots, m$. Then $C_1 + \cdots + C_m$ is a closed set.

• Special Case: If C_1 and $-C_2$ are closed convex sets, then $C_1 - C_2$ is closed if $R_{C_1} \cap R_{C_2} = \{0\}$.

Proof: The Cartesian product $C = C_1 \times \cdots \times C_m$ is closed convex, and its recession cone is $R_C = R_{C_1} \times \cdots \times R_{C_m}$. Let A be defined by

$$A(x_1,\ldots,x_m)=x_1+\cdots+x_m$$

Then

$$A C = C_1 + \dots + C_m,$$

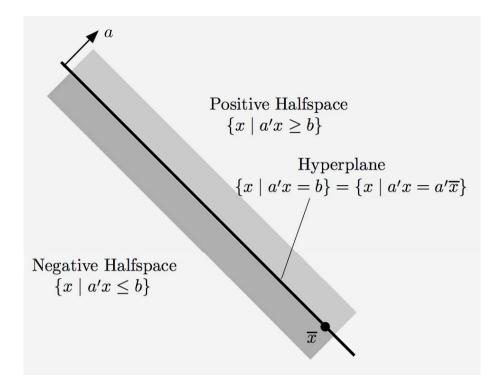
and

$$N(A) = \{ (d_1, \dots, d_m) \mid d_1 + \dots + d_m = 0 \}$$

 $R_C \cap N(A) = \left\{ (d_1, \dots, d_m) \mid d_1 + \dots + d_m = 0, \, d_i \in R_{C_i}, \, \forall \, i \right\}$

By the given condition, $R_C \cap N(A) = \{0\}$, so AC is closed. **Q.E.D.**

HYPERPLANES



• A hyperplane is a set of the form $\{x \mid a'x = b\}$, where a is nonzero vector in \Re^n and b is a scalar.

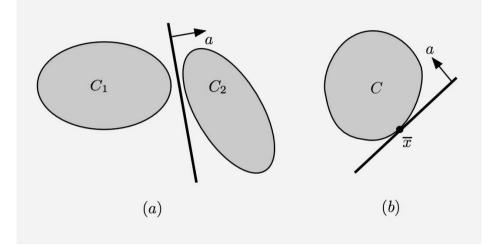
• We say that two sets C_1 and C_2 are *separated* by a hyperplane $H = \{x \mid a'x = b\}$ if each lies in a different closed halfspace associated with H, i.e.,

either $a'x_1 \leq b \leq a'x_2$, $\forall x_1 \in C_1, \forall x_2 \in C_2$, or $a'x_2 \leq b \leq a'x_1$, $\forall x_1 \in C_1, \forall x_2 \in C_2$

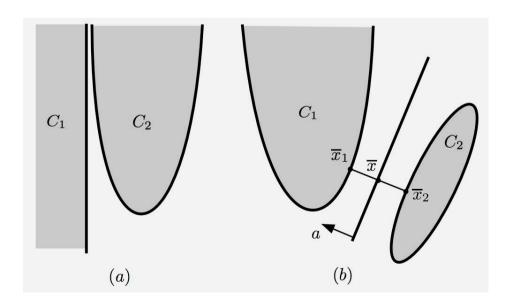
• If \overline{x} belongs to the closure of a set C, a hyperplane that separates C and the singleton set $\{\overline{x}\}$ is said be supporting C at \overline{x} .

VISUALIZATION

• Separating and supporting hyperplanes:

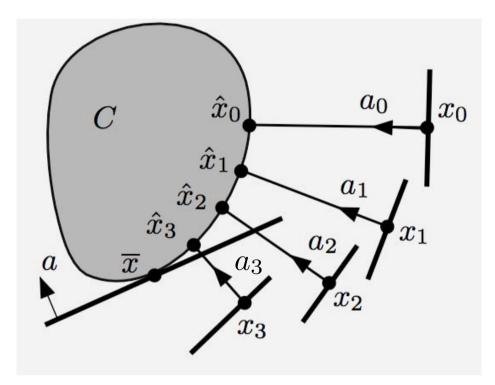


• A separating $\{x \mid a'x = b\}$ that is disjoint from C_1 and C_2 is called *strictly* separating:



SUPPORTING HYPERPLANE THEOREM

• Let C be convex and let \overline{x} be a vector that is not an interior point of C. Then, there exists a hyperplane that passes through \overline{x} and contains Cin one of its closed halfspaces.



Proof: Take a sequence $\{x_k\}$ that does not belong to cl(C) and converges to \overline{x} . Let \hat{x}_k be the projection of x_k on cl(C). We have for all $x \in$ cl(C)

$$a'_k x \ge a'_k x_k, \qquad \forall \ x \in \operatorname{cl}(C), \ \forall \ k = 0, 1, \dots,$$

where $a_k = (\hat{x}_k - x_k) / ||\hat{x}_k - x_k||$. Let *a* be a limit point of $\{a_k\}$, and take limit as $k \to \infty$. **Q.E.D.**

SEPARATING HYPERPLANE THEOREM

• Let C_1 and C_2 be two nonempty convex subsets of \Re^n . If C_1 and C_2 are disjoint, there exists a hyperplane that separates them, i.e., there exists a vector $a \neq 0$ such that

 $a'x_1 \leq a'x_2, \quad \forall x_1 \in C_1, \ \forall x_2 \in C_2.$

Proof: Consider the convex set

$$C_1 - C_2 = \{x_2 - x_1 \mid x_1 \in C_1, x_2 \in C_2\}$$

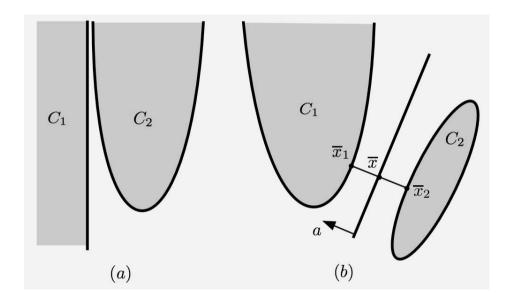
Since C_1 and C_2 are disjoint, the origin does not belong to $C_1 - C_2$, so by the Supporting Hyperplane Theorem, there exists a vector $a \neq 0$ such that

 $0 \le a'x, \qquad \forall \ x \in C_1 - C_2,$

which is equivalent to the desired relation. **Q.E.D.**

STRICT SEPARATION THEOREM

• Strict Separation Theorem: Let C_1 and C_2 be two disjoint nonempty convex sets. If C_1 is closed, and C_2 is compact, there exists a hyperplane that strictly separates them.



Proof: (Outline) Consider the set $C_1 - C_2$. Since C_1 is closed and C_2 is compact, $C_1 - C_2$ is closed. Since $C_1 \cap C_2 = \emptyset$, $0 \notin C_1 - C_2$. Let $\overline{x}_1 - \overline{x}_2$ be the projection of 0 onto $C_1 - C_2$. The strictly separating hyperplane is constructed as in (b).

• Note: Any conditions that guarantee closedness of $C_1 - C_2$ guarantee existence of a strictly separating hyperplane. However, there may exist a strictly separating hyperplane without $C_1 - C_2$ being closed. 6.253 Convex Analysis and Optimization Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.