LECTURE 7

LECTURE OUTLINE

- Review of hyperplane separation
- Nonvertical hyperplanes
- Convex conjugate functions
- Conjugacy theorem
- Examples

Reading: Section 1.5, 1.6

ADDITIONAL THEOREMS

- Fundamental Characterization: The closure of the convex hull of a set $C \subset \Re^{n}$ is the intersection of the closed halfspaces that contain C. (Proof uses the strict separation theorem.)
- We say that a hyperplane properly separates C_{1} and C_{2} if it separates C_{1} and C_{2} and does not fully contain both C_{1} and C_{2}.

- Proper Separation Theorem: Let C_{1} and C_{2} be two nonempty convex subsets of \Re^{n}. There exists a hyperplane that properly separates C_{1} and C_{2} if and only if

$$
\operatorname{ri}\left(C_{1}\right) \cap \operatorname{ri}\left(C_{2}\right)=\varnothing
$$

PROPER POLYHEDRAL SEPARATION

- Recall that two convex sets C and P such that

$$
\operatorname{ri}(C) \cap \operatorname{ri}(P)=\varnothing
$$

can be properly separated, i.e., by a hyperplane that does not contain both C and P.

- If P is polyhedral and the slightly stronger condition

$$
\operatorname{ri}(C) \cap P=\varnothing
$$

holds, then the properly separating hyperplane can be chosen so that it does not contain the nonpolyhedral set C while it may contain P.

(a)

(b)

On the left, the separating hyperplane can be chosen so that it does not contain C. On the right where P is not polyhedral, this is not possible.

NONVERTICAL HYPERPLANES

- A hyperplane in \Re^{n+1} with normal (μ, β) is nonvertical if $\beta \neq 0$.
- It intersects the $(n+1)$ st axis at $\xi=(\mu / \beta)^{\prime} \bar{u}+\bar{w}$, where (\bar{u}, \bar{w}) is any vector on the hyperplane.

- A nonvertical hyperplane that contains the epigraph of a function in its "upper" halfspace, provides lower bounds to the function values.
- The epigraph of a proper convex function does not contain a vertical line, so it appears plausible that it is contained in the "upper" halfspace of some nonvertical hyperplane.

NONVERTICAL HYPERPLANE THEOREM

- Let C be a nonempty convex subset of \Re^{n+1} that contains no vertical lines. Then:
(a) C is contained in a closed halfspace of a nonvertical hyperplane, i.e., there exist $\mu \in \Re^{n}$, $\beta \in \Re$ with $\beta \neq 0$, and $\gamma \in \Re$ such that $\mu^{\prime} u+\beta w \geq \gamma$ for all $(u, w) \in C$.
(b) If $(\bar{u}, \bar{w}) \notin \operatorname{cl}(C)$, there exists a nonvertical hyperplane strictly separating (\bar{u}, \bar{w}) and C.

Proof: Note that $\mathrm{cl}(C)$ contains no vert. line [since C contains no vert. line, ri (C) contains no vert. line, and $\operatorname{ri}(C)$ and $\mathrm{cl}(C)$ have the same recession cone]. So we just consider the case: C closed.
(a) C is the intersection of the closed halfspaces containing C. If all these corresponded to vertical hyperplanes, C would contain a vertical line.
(b) There is a hyperplane strictly separating (\bar{u}, \bar{w}) and C. If it is nonvertical, we are done, so assume it is vertical. "Add" to this vertical hyperplane a small ϵ-multiple of a nonvertical hyperplane containing C in one of its halfspaces as per (a).

CONJUGATE CONVEX FUNCTIONS

- Consider a function f and its epigraph

Nonvertical hyperplanes supporting epi (f)
$\mapsto \quad$ Crossing points of vertical axis

$$
f^{\star}(y)=\sup _{x \in \Re^{n}}\left\{x^{\prime} y-f(x)\right\}, \quad y \in \Re^{n} .
$$

- For any $f: \Re^{n} \mapsto[-\infty, \infty]$, its conjugate convex function is defined by

$$
f^{\star}(y)=\sup _{x \in \Re^{n}}\left\{x^{\prime} y-f(x)\right\}, \quad y \in \Re^{n}
$$

EXAMPLES

$$
f^{\star}(y)=\sup _{x \in \Re^{n}}\left\{x^{\prime} y-f(x)\right\}, \quad y \in \Re^{n}
$$

CONJUGATE OF CONJUGATE

- From the definition

$$
f^{\star}(y)=\sup _{x \in \Re^{n}}\left\{x^{\prime} y-f(x)\right\}, \quad y \in \Re^{n}
$$

note that f^{\star} is convex and closed.

- Reason: epi $\left(f^{\star}\right)$ is the intersection of the epigraphs of the linear functions of y

$$
x^{\prime} y-f(x)
$$

as x ranges over \Re^{n}.

- Consider the conjugate of the conjugate:

$$
f^{\star \star}(x)=\sup _{y \in \Re^{n}}\left\{y^{\prime} x-f^{\star}(y)\right\}, \quad x \in \Re^{n}
$$

- $f^{\star \star}$ is convex and closed.
- Important fact/Conjugacy theorem: If f is closed proper convex, then $f^{\star \star}=f$.

CONJUGACY THEOREM - VISUALIZATION

$$
\begin{array}{rlrl}
f^{\star}(y) & =\sup _{x \in \Re^{n}}\left\{x^{\prime} y-f(x)\right\}, & y \in \Re^{n} \\
f^{\star \star}(x) & =\sup _{y \in \Re^{n}}\left\{y^{\prime} x-f^{\star}(y)\right\}, & & x \in \Re^{n}
\end{array}
$$

- If f is closed convex proper, then $f \star=f$.

CONJUGACY THEOREM

- Let $f: \Re^{n} \mapsto(-\infty, \infty]$ be a function, let čl f be its convex closure, let $f \star$ be its convex conjugate, and consider the conjugate of f^{\star},

$$
f_{\star \star}(x)=\sup _{y \in \Re^{n}}\left\{y^{\prime} x-f^{\star}(y)\right\}, \quad x \in \Re^{n}
$$

(a) We have

$$
f(x) \geq f^{\star \star}(x), \quad \forall x \in \Re^{n}
$$

(b) If f is convex, then properness of any one of f, f^{\star}, and $f^{\star \star}$ implies properness of the other two.
(c) If f is closed proper and convex, then

$$
f(x)=f^{\star \star}(x), \quad \forall x \in \Re^{n}
$$

(d) If čl $f(x)>-\infty$ for all $x \in \Re^{n}$, then

$$
\check{\operatorname{cl}} f(x)=f \star \star(x), \quad \forall x \in \Re^{n}
$$

PROOF OF CONJUGACY THEOREM (A), (C)

- (a) For all x, y, we have $f^{\star}(y) \geq y^{\prime} x-f(x)$, implying that $f(x) \geq \sup _{y}\left\{y^{\prime} x-f^{\star}(y)\right\}=f^{\star \star}(x)$.
- (c) By contradiction. Assume there is $(x, \gamma) \in$ epi $(f \star \star)$ with $(x, \gamma) \notin \operatorname{epi}(f)$. There exists a nonvertical hyperplane with normal $(y,-1)$ that strictly separates (x, γ) and epi (f). (The vertical component of the normal vector is normalized to -1.)

- Consider two parallel hyperplanes, translated to pass through $(x, f(x))$ and $(x, f \star \star(x))$. Their vertical crossing points are $x^{\prime} y-f(x)$ and $x^{\prime} y-$ $f^{\star \star}(x)$, and lie strictly above and below the crossing point of the strictly sep. hyperplane. Hence

$$
x^{\prime} y-f(x)>x^{\prime} y-f^{\star \star}(x)
$$

the fact $f \geq f^{\star \star}$. Q.E.D.

A COUNTEREXAMPLE

- A counterexample (with closed convex but improper f) showing the need to assume properness in order for $f=f \star \star$:

$$
f(x)= \begin{cases}\infty & \text { if } x>0 \\ -\infty & \text { if } x \leq 0\end{cases}
$$

We have

$$
\begin{gathered}
f^{\star}(y)=\infty, \quad \forall y \in \Re^{n}, \\
f^{\star \star}(x)=-\infty, \quad \forall x \in \Re^{n} .
\end{gathered}
$$

But

$$
\check{\mathrm{cl}} f=f,
$$

so čl $f \neq f \star \star$.

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

