LECTURE 8

LECTURE OUTLINE

- Review of conjugate convex functions
- Min common/max crossing duality
- Weak duality
- Special cases

Reading: Sections 1.6, 4.1, 4.2

CONJUGACY THEOREM

$$
\begin{array}{rlrl}
f^{\star}(y) & =\sup _{x \in \Re^{n}}\left\{x^{\prime} y-f(x)\right\}, & y \in \Re^{n} \\
f^{\star \star}(x) & =\sup _{y \in \Re^{n}}\left\{y^{\prime} x-f^{\star}(y)\right\}, & & x \in \Re^{n}
\end{array}
$$

- If f is closed convex proper, then $f \star=f$.

A FEW EXAMPLES

- l_{p} and l_{q} norm conjugacy, where $\frac{1}{p}+\frac{1}{q}=1$

$$
f(x)=\frac{1}{p} \sum_{i=1}^{n}\left|x_{i}\right|^{p}, \quad f^{\star}(y)=\frac{1}{q} \sum_{i=1}^{n}\left|y_{i}\right|^{q}
$$

- Conjugate of a strictly convex quadratic

$$
\begin{gathered}
f(x)=\frac{1}{2} x^{\prime} Q x+a^{\prime} x+b, \\
f^{\star}(y)=\frac{1}{2}(y-a)^{\prime} Q^{-1}(y-a)-b .
\end{gathered}
$$

- Conjugate of a function obtained by invertible linear transformation/translation of a function p

$$
\begin{gathered}
f(x)=p(A(x-c))+a^{\prime} x+b, \\
f^{\star}(y)=q\left(\left(A^{\prime}\right)^{-1}(y-a)\right)+c^{\prime} y+d,
\end{gathered}
$$

where q is the conjugate of p and $d=-\left(c^{\prime} a+b\right)$.

SUPPORT FUNCTIONS

- Conjugate of indicator function δ_{X} of set X

$$
\sigma_{X}(y)=\sup _{x \in X} y^{\prime} x
$$

is called the support function of X.

- To determine $\sigma_{X}(y)$ for a given vector y, we project the set X on the line determined by y, we find \hat{x}, the extreme point of projection in the direction y, and we scale by setting

$$
\sigma_{X}(y)=\|\hat{x}\| \cdot\|y\|
$$

- epi $\left(\sigma_{X}\right)$ is a closed convex cone.
- The sets $X, \operatorname{cl}(X), \operatorname{conv}(X)$, and $\operatorname{cl}(\operatorname{conv}(X))$ all have the same support function (by the conjugacy theorem).

SUPPORT FN OF A CONE - POLAR CONE

- The conjugate of the indicator function δ_{C} is the support function, $\sigma_{C}(y)=\sup _{x \in C} y^{\prime} x$.
- If C is a cone,

$$
\sigma_{C}(y)= \begin{cases}0 & \text { if } y^{\prime} x \leq 0, \forall x \in C \\ \infty & \text { otherwise }\end{cases}
$$

i.e., σ_{C} is the indicator function $\delta_{C^{*}}$ of the cone

$$
C^{*}=\left\{y \mid y^{\prime} x \leq 0, \forall x \in C\right\}
$$

This is called the polar cone of C.

- By the Conjugacy Theorem the polar cone of C^{*} is $\mathrm{cl}(\operatorname{conv}(C))$. This is the Polar Cone Theorem.
- Special case: If $C=\operatorname{cone}\left(\left\{a_{1}, \ldots, a_{r}\right\}\right)$, then

$$
C^{*}=\left\{x \mid a_{j}^{\prime} x \leq 0, j=1, \ldots, r\right\}
$$

- Farkas' Lemma: $\left(C^{*}\right)^{*}=C$.
- True because C is a closed set $\left[\operatorname{cone}\left(\left\{a_{1}, \ldots, a_{r}\right\}\right)\right.$ is the image of the positive orthant $\{\alpha \mid \alpha \geq 0\}$ under the linear transformation that maps α to $\left.\sum_{j=1}^{r} \alpha_{j} a_{j}\right]$, and the image of any polyhedral set under a linear transformation is a closed set.

EXTENDING DUALITY CONCEPTS

- From dual descriptions of sets

A union of points

- To dual descriptions of functions (applying set duality to epigraphs)

- We now go to dual descriptions of problems, by applying conjugacy constructions to a simple generic geometric optimization problem

MIN COMMON / MAX CROSSING PROBLEMS

- We introduce a pair of fundamental problems:
- Let M be a nonempty subset of \Re^{n+1}
(a) Min Common Point Problem: Consider all vectors that are common to M and the ($n+$ $1)$ st axis. Find one whose $(n+1)$ st component is minimum.
(b) Max Crossing Point Problem: Consider nonvertical hyperplanes that contain M in their "upper" closed halfspace. Find one whose crossing point of the $(n+1)$ st axis is maximum.

(c)

MATHEMATICAL FORMULATIONS

- Optimal value of min common problem:

$$
w^{*}=\inf _{(0, w) \in M} w
$$

- Math formulation of max crossing problem: Focus on hyperplanes with normals ($\mu, 1$) whose crossing point ξ satisfies

$$
\xi \leq w+\mu^{\prime} u, \quad \forall(u, w) \in M
$$

Max crossing problem is to maximize ξ subject to $\xi \leq \inf _{(u, w) \in M}\left\{w+\mu^{\prime} u\right\}, \mu \in \Re^{n}$, or
maximize $q(\mu) \triangleq \inf _{(u, w) \in M}\left\{w+\mu^{\prime} u\right\}$ subject to $\mu \in \Re^{n}$.

GENERIC PROPERTIES - WEAK DUALITY

- Min common problem

$$
\inf _{(0, w) \in M} w
$$

- Max crossing problem maximize $q(\mu) \triangleq \inf _{(u, w) \in M}\left\{w+\mu^{\prime} u\right\}$ subject to $\mu \in \Re^{n}$.

- Note that q is concave and upper-semicontinuous (inf of linear functions).
- Weak Duality: For all $\mu \in \Re^{n}$

$$
q(\mu)=\inf _{(u, w) \in M}\left\{w+\mu^{\prime} u\right\} \leq \inf _{(0, w) \in M} w=w^{*}
$$

so maximizing over $\mu \in \Re^{n}$, we obtain $q^{*} \leq w^{*}$.

- We say that strong duality holds if $q^{*}=w^{*}$.

CONNECTION TO CONJUGACY

- An important special case:

$$
M=\operatorname{epi}(p)
$$

where $p: \Re^{n} \mapsto[-\infty, \infty]$. Then $w^{*}=p(0)$, and
$q(\mu)=\inf _{(u, w) \in \operatorname{epi}(p)}\left\{w+\mu^{\prime} u\right\}=\inf _{\{(u, w) \mid p(u) \leq w\}}\left\{w+\mu^{\prime} u\right\}$,
and finally

$$
q(\mu)=\inf _{u \in \Re^{m}}\left\{p(u)+\mu^{\prime} u\right\}
$$

- Thus, $q(\mu)=-p^{\star}(-\mu)$ and

$$
q^{*}=\sup _{\mu \in \Re^{n}} q(\mu)=\sup _{\mu \in \Re^{n}{ }_{10}}\left\{0 \cdot(-\mu)-p^{\star}(-\mu)\right\}=p^{\star \star}(0)
$$

GENERAL OPTIMIZATION DUALITY

- Consider minimizing a function $f: \Re^{n} \mapsto[-\infty, \infty]$.
- Let $F: \Re^{n+r} \mapsto[-\infty, \infty]$ be a function with

$$
f(x)=F(x, 0), \quad \forall x \in \Re^{n}
$$

- Consider the perturbation function

$$
p(u)=\inf _{x \in \Re^{n}} F(x, u)
$$

and the $\mathrm{MC} / \mathrm{MC}$ framework with $M=\operatorname{epi}(p)$

- The min common value w^{*} is

$$
w^{*}=p(0)=\inf _{x \in \Re^{n}} F(x, 0)=\inf _{x \in \Re^{n}} f(x)
$$

- The dual function is
$q(\mu)=\inf _{u \in \Re^{r}}\left\{p(u)+\mu^{\prime} u\right\}=\inf _{(x, u) \in \Re^{n+r}}\left\{F(x, u)+\mu^{\prime} u\right\}$
so $q(\mu)=-F^{\star}(0,-\mu)$, where F^{\star} is the conjugate of F, viewed as a function of (x, u)
- We have

$$
q^{*}=\sup _{\mu \in \Re^{r}} q(\mu)=-\inf _{\mu \in \Re^{r}} F^{\star}(0,-\mu)=-\inf _{\mu \in \Re^{r}} F^{\star}(0, \mu),
$$

and weak duality has the form

$$
w^{*}=\inf _{x \in \Re^{n}} F(x, 0) \geq-\inf _{\mu \in \Re^{r}} F^{\star}(0, \mu)=q^{*}
$$

CONSTRAINED OPTIMIZATION

- Minimize $f: \Re^{n} \mapsto \Re$ over the set

$$
C=\{x \in X \mid g(x) \leq 0\}
$$

where $X \subset \Re^{n}$ and $g: \Re^{n} \mapsto \Re^{r}$.

- Introduce a "perturbed constraint set"

$$
C_{u}=\{x \in X \mid g(x) \leq u\}, \quad u \in \Re^{r}
$$

and the function

$$
F(x, u)= \begin{cases}f(x) & \text { if } x \in C_{u} \\ \infty & \text { otherwise }\end{cases}
$$

which satisfies $F(x, 0)=f(x)$ for all $x \in C$.

- Consider perturbation function

$$
p(u)=\inf _{x \in \Re^{n}} F(x, u)=\inf _{x \in X, g(x) \leq u} f(x)
$$

and the $\mathrm{MC} / \mathrm{MC}$ framework with $M=\operatorname{epi}(p)$.

CONSTR. OPT. - PRIMAL AND DUAL FNS

- Perturbation function (or primal function)

$$
p(u)=\inf _{x \in X, g(x) \leq u} f(x),
$$

- Introduce $L(x, \mu)=f(x)+\mu^{\prime} g(x)$. Then

$$
\begin{aligned}
q(\mu) & =\inf _{u \in \Re^{r}}\left\{p(u)+\mu^{\prime} u\right\} \\
& =\inf _{u \in \Re^{r}, x \in X, g(x) \leq u}\left\{f(x)+\mu^{\prime} u\right\} \\
& = \begin{cases}\inf _{x \in X} L(x, \mu) & \text { if } \mu \geq 0, \\
-\infty & \text { otherwise. }\end{cases}
\end{aligned}
$$

LINEAR PROGRAMMING DUALITY

- Consider the linear program
minimize $c^{\prime} x$
subject to $a_{j}^{\prime} x \geq b_{j}, \quad j=1, \ldots, r$,
where $c \in \Re^{n}, a_{j} \in \Re^{n}$, and $b_{j} \in \Re, j=1, \ldots, r$.
- For $\mu \geq 0$, the dual function has the form

$$
\begin{aligned}
q(\mu) & =\inf _{x \in \Re^{n}} L(x, \mu) \\
& =\inf _{x \in \Re^{n}}\left\{c^{\prime} x+\sum_{j=1}^{r} \mu_{j}\left(b_{j}-a_{j}^{\prime} x\right)\right\} \\
& = \begin{cases}b^{\prime} \mu & \text { if } \sum_{j=1}^{r} a_{j} \mu_{j}=c \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- Thus the dual problem is
maximize $b^{\prime} \mu$
subject to $\sum_{j=1}^{r} a_{j} \mu_{j}=c, \quad \mu \geq 0$.

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

