
LECTURE 10

LECTURE OUTLINE

• Min Common/Max Crossing Th. III

• Nonlinear Farkas Lemma/Linear Constraints

• Linear Programming Duality

• Convex Programming Duality

• Optimality Conditions

Reading: Sections 4.5, 5.1,5.2, 5.3.1, 5.3.2

Recall the MC/MC Theorem II: If −⇣ < w⇤

and

0 ⌘ ri(D) =
⇤
u | there exists w ⌘ � with (u,w) ⌘M}

then q⇤ = w⇤ and there exists µ s. t. q(µ) = q⇤.
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All figures are courtesy of Athena Scientific, and are used with permission.
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MC/MC TH. III - POLYHEDRAL

• Consider the MC/MC problems, and assume
that −⇣ < w⇤ and:

(1) M is a “horizontal translation” of M̃ by −P ,

M = M̃ −
⇤
(u, 0) | u ⌘ P

⌅
,

where P : polyhedral and M̃ : convex.
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M = M̃ −
⇤
(u, 0) | u ⇧ P

⌅

P

(2) We have ri(D̃) ⌫ P = Ø, where

D̃ =
⇤
u | there exists w ⌘ � with (u,w) ˜⌘M}

Then q⇤ = w⇤, there is a max crossing solution,
and all max crossing solutions µ satisfy µ�d ⌥ 0
for all d ⌘ RP .

• Comparison with Th. II: Since D = D̃−P ,
the condition 0 ⌘ ri(D) of Theorem II is

ri(D̃) ri(P ) = Ø

✓

⌫ ✓
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PROOF OF MC/MC TH. III

• Consider the disjoint conv⌅ex sets C1 = (u, v) |
v > w for some (u,w) ˜

⌅ ⌘ M and C2 = (u, w⇤) |
u ⌘ P [u ⌘ P and (u,w) ˜

⇤

⌘ M with

⇤

w⇤ > w
contradicts the definition of w⇤]

(µ, )

0} u

v

C1

C2

M̃

w

P

• Since C2 is polyhedral, there exists a separat-
ing hyperplane not containing C1, i.e., a (µ,⇥) =
(0, 0) such that

⇥w⇤ + µ�z ⌥ ⇥v + µ�x,  (x, v) ⌘ C1,  z ⌘ P

inf
(x,v)⌦C1

Since (0, 1) is

⇤
⇥v + µ�x

⌅
< sup ⇥v + µ�x

(x,v)⌦C1

a direction of recession

⇤

of C

⌅

1, we see
that ⇥ ≥ 0. Because of the relative interior point
assumption, ⇥ = 0, so we may assume that ⇥ = 1.

✓

✓
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PROOF (CONTINUED)

• Hence,

w⇤ + µ�z ⌥ inf {v + µ�u},  z P,
(u,v)⌦C1

⌘

so that

w⇤ ⌥ inf v + µ�(u z)
(u,v)⌦C1, z⌦P

⇤
−

= inf

⌅

(u,v)⌦M̃−P
{v + µ�u}

= inf {v + µ�u
(u,v)⌦M

}

= q(µ)

Using q⇤ ⌥ w⇤ (weak duality), we have q(µ) =
q⇤ = w⇤.

Proof that all max crossing solutions µ sat-
isfy µ�d ⌥ 0 for all d ⌘ RP : follows from

q(µ) = inf v + µ�(u z)
(u,v)⌦C1, z⌦P

⇤
−

⌅

so that q(µ) = −⇣ if µ�d > 0. Q.E.D.

• Geometrical intuition: every (0,−d) with d ⌘
RP , is direction of recession of M .
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MC/MC TH. III - A SPECIAL CASE

• Consider the MC/MC framework, and assume:

(1) For a convex function f : �m → (−⇣,⇣],
an r ⇤m matrix A, and a vector b ⌘ �r:

M =
⇤
(u, w) | for some (x, w) ✏ epi(f), Ax− b ⌃ u

so M = M̃ + Positive Orthant, where

⌅

M̃ = (Ax− b, w) | (x,w) ⌘ epi(f)

◆

⇤ ⌅

0} x

epi(f)

w

0} u

M̃

w⇥

w

u0}

w⇥

(µ, 1)

q(µ)

Ax ⇥ b

(x⇥, w⇥) (x,w) ⇧⌅ (Ax − b, w)

p(u) = inf
Ax−b⇤u

f(x)

�
(u,w) | p(u) < w

⇥
⇤ M ⇤ epi(p)

M

(2) There is an x ⌘ ri(dom(f)) s. t. Ax− b ⌥ 0.

Then q⇤ = w⇤ and there is a µ ≥ 0 with q(µ) = q⇤.

• Also M = M  epi(p), where p(u) = infAx b u f(x).− ⌅

We have w⇤ = p(0) = infAx−b 0 f(x).⌅•
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NONL. FARKAS’ L. - POLYHEDRAL ASSUM.

• Let X ⌦ �n be convex, and f : X ◆→ � and gj :
�n → �, j = 1, . . . , r, be linear so g(x) = Ax− b
for some A and b. Assume that

f(x) ≥ 0,  x ⌘ X with Ax− b ⌥ 0

Let

Q⇤ =
⇤
µ | µ ≥ 0, f(x)+µ�(Ax−b) ≥ 0,  x ⌘ X .

Assume that there exists a vector x

⌅

⌘ ri(X) such
that Ax− b ⌥ 0. Then Q⇤ is nonempty.

Proof: As before, apply special case of MC/MC
Th. III of preceding slide, using the fact w⇤ ≥ 0,
implied by the assumption.

◆

(µ, 1)

0 u

w

(0, w∗)

D

⇤
(Ax − b, f(x)) | x ⌅ X

⌅

M =
⇤
(u, w) | Ax − b ⇥ u, for some (x,w) ⌅ epi(f)

⌅
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(LINEAR) FARKAS’ LEMMA

• Let A be an m ⇤ n matrix and c ⌘ �m. The
system Ay = c, y ≥ 0 has a solution if and only if

A�x ⌥ 0 ✏ c�x ⌥ 0. (⌅)

• Alternative/Equivalent Statement: If P =
cone{a1, . . . , an}, where a1, . . . , an are the columns
of A, then P = (P ⇤)⇤ (Polar Cone Theorem).

Proof: If y ⌘ �n is such that Ay = c, y
m

≥ 0, then
y�A�x = c�x for all x ⌘ � , which implies Eq. (*).

Conversely, apply the Nonlinear Farkas’ Lemma
with f(x) = −c�x, g(x) = A�x, and X = �m.
Condition (*) implies the existence of µ ≥ 0 such
that

−c�x + µ�A�x ≥ 0,  x ⌘ �m,

or equivalently

(Aµ− c)�x ≥ 0,  x ⌘ �m,

or Aµ = c.
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LINEAR PROGRAMMING DUALITY

• Consider the linear program

minimize c�x

subject to a�jx ≥ bj , j = 1, . . . , r,

where c ⌘ �n, aj ⌘ �n, and bj ⌘ �, j = 1, . . . , r.

• The dual problem is

maximize b�µ
r

subject to
⌧

ajµj = c, µ 0.
j=1

≥

• Linear Programming Duality Theorem:

(a) If either f⇤ or q⇤ is finite, then f⇤ = q⇤ and
both the primal and the dual problem have
optimal solutions.

(b) If f⇤ = −⇣, then q⇤ = −⇣.

(c) If q⇤ = ⇣, then f⇤ = ⇣.

Proof: (b) and (c) follow from weak duality. For
part (a): If f⇤ is finite, there is a primal optimal
solution x⇤, by existence of solutions of quadratic
programs. Use Farkas’ Lemma to construct a dual
feasible µ⇤ such that c�x⇤ = b�µ⇤ (next slide).
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PROOF OF LP DUALITY (CONTINUED)

Feasible Set

x

a1
a2

c = µ
1a1 + µ

2a2

Cone D (translated to x)

• Let x⇤ be a primal optimal solution, and let
J = {j | a�jx

⇤ = bj}. Then, c�y ≥ 0 for all y in the
cone of “feasible directions”

D = {y | a�jy ≥ 0,  j ⌘ J}

By Farkas’ Lemma, for some scalars µ⇤j ≥ 0, c can
be expressed as

r

c =
⌧

µ⇤jaj , µ⇤j ≥ 0,  j ⌘ J, µ⇤j = 0,
j=1

 j /⌘ J.

Taking inner product with x⇤, we obtain c�x⇤ =
b�µ⇤, which in view of q⇤ ⌥ f⇤, shows that q⇤ = f⇤

and that µ⇤ is optimal.
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LINEAR PROGRAMMING OPT. CONDITIONS

A pair of vectors (x⇤, µ⇤) form a primal and dual
optimal solution pair if and only if x⇤ is primal-
feasible, µ⇤ is dual-feasible, and

µ⇤j (bj − a�jx
⇤) = 0,  j = 1, . . . , r. (⌅)

Proof: If x⇤ is primal-feasible and µ⇤ is dual-
feasible, then

r

b�µ⇤ =
⌧ r

�

bjµ⇤j +

⌘

⇡c
=1

−
⌧

ajµ⇤j
j j=1

✓

⇢ x⇤

( )
r

⌅⌅

= c�x⇤ +
⌧

µ⇤j (bj a�jx
⇤)

j=1

−

So if Eq. (*) holds, we have b�µ⇤ = c�x⇤, and weak
duality implies that x⇤ is primal optimal and µ⇤

is dual optimal.
Conversely, if (x⇤, µ⇤) form a primal and dual

optimal solution pair, then x⇤ is primal-feasible,
µ⇤ is dual-feasible, and by the duality theorem, we
have b�µ⇤ = c�x⇤. From Eq. (**), we obtain Eq.
(*).

10



CONVEX PROGRAMMING

Consider the problem

minimize f(x)

subject to x ⌘ X, gj(x) ⌥ 0, j = 1, . . . , r,

where X ⌦ �n is convex, and f : X ◆→ � and
gj : X ◆→ � are convex. Assume f⇤: finite.

• Recall the connection with the max crossing
problem in the MC/MC framework where M =
epi(p) with

p(u) = inf f(x)
x⌦X, g(x)⌅u

• Consider the Lagrangian function

L(x, µ) = f(x) + µ�g(x),

the dual function

inf ( ) if 0,
q( L

µ) =
�

x⌦X x, µ µ ≥
−⇣ otherwise

and the dual problem of maximizing infx⌦X L(x, µ)
over µ 0.≥
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STRONG DUALITY THEOREM

• Assume that f⇤ is finite, and that one of the
following two conditions holds:

(1) There exists x ⌘ X such that g(x) < 0.

(2) The functions gj , j = 1, . . . , r, are a⌅ne, and
there exists x ⌘ ri(X) such that g(x) ⌥ 0.

Then q⇤ = f⇤ and the set of optimal solutions of
the dual problem is nonempty. Under condition
(1) this set is also compact.

• Proof: Replace f(x) by f(x) − f⇤ so that
f(x) − f⇤ ≥ 0 for all x ⌘ X w/ g(x) ⌥ 0. Ap-
ply Nonlinear Farkas’ Lemma. Then, there exist
µ⇤j ≥ 0, s.t.

r

f⇤ ⌥ f(x) +
⌧

µ⇤jgj(x),
j=1

 x ⌘ X

• It follows that

f⇤ ⌥ inf
⇤
f(x)+µ⇤�g(x)

x⌦X

⌅
⌥ inf f(x) = f⇤.

x⌦X, g(x)⌅0

Thus equality
◆
holds throughout, and we have

r

f⇤ = inf f(x) + µ⇤jgj(x)
x X



= q(µ⇤)
⌦

⌫


⌧

j=1

⇠
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QUADRATIC PROGRAMMING DUALITY

• Consider the quadratic program

minimize 1
2x
�Qx + c�x

subject to Ax ⌥ b,

where Q is positive definite.

• If f⇤ is finite, then f⇤ = q⇤ and there exist
both primal and dual optimal solutions, since the
constraints are linear.

• Calculation of dual function:

q(µ) = inf
x⌦�n

{ 1
2x
�Qx + c�x + µ�(Ax− b)}

The infimum is attained for x = −Q−1(c + A�µ),
and, after substitution and calculation,

q(µ) = − 1µ�AQ−1A�µ−µ�(b+AQ−1c)− 1c�Q−1
2 2 c

• The dual problem, after a sign change, is

minimize 1
2µ
�Pµ + t�µ

subject to µ ≥ 0,

where P = AQ−1A� and t = b + AQ−1c.

13



OPTIMALITY CONDITIONS

• We have q⇤ = f⇤, and the vectors x⇤ and µ⇤ are
optimal solutions of the primal and dual problems,
respectively, iff x⇤ is feasible, µ⇤ ≥ 0, and

x⇤ ⌘ arg min L(x, µ⇤), µ⇤jgj(x⇤) = 0, j.
x⌦X


(1)

Proof: If q⇤ = f⇤, and x⇤, µ⇤ are optimal, then

f⇤ = q⇤ = q(µ⇤) = inf L(x, µ⇤)
x⌦X

⌥ L(x⇤, µ⇤)

r

= f(x⇤) +
⌧

µ⇤jgj(x⇤) f(x⇤),
j=1

⌥

where the last inequality follows from µ⇤j ≥ 0 and
gj(x⇤) ⌥ 0 for all j. Hence equality holds through-
out above, and (1) holds.

Conversely, if x⇤, µ⇤ are feasible, and (1) holds,

q(µ⇤) = inf L(x, µ⇤) = L(x⇤, µ⇤)
x⌦X

r

= f(x⇤) +
⌧

µ⇤jgj(x⇤) = f(x⇤),
j=1

so q⇤ = f⇤, and x⇤, µ⇤ are optimal. Q.E.D.
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QUADRATIC PROGRAMMING OPT. COND.

For the quadratic program

minimize 1
2x
�Qx + c�x

subject to Ax ⌥ b,

where Q is positive definite, (x⇤, µ⇤) is a primal
and dual optimal solution pair if and only if:

• Primal and dual feasibility holds:

Ax⇤ ⌥ b, µ⇤ ≥ 0

• Lagrangian optimality holds [x⇤ minimizes L(x, µ⇤)
over x ⌘ �n]. This yields

x⇤ = −Q−1(c + A�µ⇤)

• Complementary slackness holds [(Ax⇤−b)�µ⇤ =
0]. It can be written as

µ⇤j > 0 ✏ a�jx
⇤ = bj ,  j = 1, . . . , r,

where a�j is the jth row of A, and bj is the jth
component of b.
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LINEAR EQUALITY CONSTRAINTS

• The problem is

minimize f(x)

subject to x ⌘ X, g(x) ⌥ 0, Ax = b,

where X is convex, g(x) =
�
g1(x), . . . , gr(x)

,

⇥�
, f :

X ◆→ � and gj : X ◆→ � j = 1, . . . , r, are convex.

• Convert the constraint Ax = b to Ax ⌥ b
and −Ax ⌥ −b, with corresponding dual variables
⌃+ ≥ 0 and ⌃− ≥ 0.

• The Lagrangian function is

f(x) + µ�g(x) + (⌃+ − ⌃−)�(Ax− b),

and by introducing a dual variable ⌃ = ⌃+ − ⌃−,
with no sign restriction, it can be written as

L(x, µ,⌃) = f(x) + µ�g(x) + ⌃�(Ax− b).

• The dual problem is

maximize q(µ,⌃) ⌃ inf L(x, µ,⌃)
x⌦X

subject to µ ≥ 0, ⌃ ⌘ �m.
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DUALITY AND OPTIMALITY COND.

• Pure equality constraints:

(a) Assume that f⇤: finite and there exists x ⌘
ri(X) such that Ax = b. Then f⇤ = q⇤ and
there exists a dual optimal solution.

(b) f⇤ = q⇤, and (x⇤,⌃⇤) are a primal and dual
optimal solution pair if and only if x⇤ is fea-
sible, and

x⇤ ⌘ arg min L(x,⌃⇤)
x⌦X

Note: No complementary slackness for equality
constraints.

• Linear and nonlinear constraints:

(a) Assume f⇤: finite, that there exists x ⌘ X
such that Ax = b and g(x) < 0, and that
there exists x̃ ⌘ ri(X) such that Ax̃ = b.
Then q⇤ = f⇤ and there exists a dual optimal
solution.

(b) f⇤ = q⇤, and (x⇤, µ⇤,⌃⇤) are a primal and
dual optimal solution pair if and only if x⇤

is feasible, µ⇤ ≥ 0, and

x⇤ ⌘ arg min L(x, µ⇤,⌃⇤), µ⇤jgj(x⇤) = 0,
x⌦X

 j
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