
LECTURE 11

LECTURE OUTLINE

• Review of convex progr. duality/counterexamples

• Fenchel Duality

• Conic Duality

Reading: Sections 5.3.1-5.3.6

Line of analysis so far:

• Convex analysis (rel. int., dir. of recession, hy-
perplanes, conjugacy)

• MC/MC - Three general theorems: Strong dual-
ity, existence of dual optimal solutions, polyhedral
refinements

• Nonlinear Farkas’ Lemma

• Linear programming (duality, opt. conditions)

• Convex programming

minimize f(x)

subject to x ⌘ X, g(x) ⌥ 0, Ax = b,

where X is convex, g(x) =
�
g1(x), . . . , gr(x)

�
, f :

X ◆→ � and gj : X ◆→ �, j = 1, . . . , r, are con

⇥

vex.
(Nonlin. Farkas’ Lemma, duality, opt. conditions)

All figures are courtesy of Athena Scientific, and are used with permission.
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DUALITY AND OPTIMALITY COND.

• Pure equality constraints:

(a) Assume that f⇤: finite and there exists x ⌘
ri(X) such that Ax = b. Then f⇤ = q⇤ and
there exists a dual optimal solution.

(b) f⇤ = q⇤, and (x⇤,⌃⇤) are a primal and dual
optimal solution pair if and only if x⇤ is fea-
sible, and

x⇤ ⌘ arg min L(x,⌃⇤)
x⌦X

Note: No complementary slackness for equality
constraints.

• Linear and nonlinear constraints:

(a) Assume f⇤: finite, that there exists x ⌘ X
such that Ax = b and g(x) < 0, and that
there exists x̃ ⌘ ri(X) such that Ax̃ = b.
Then q⇤ = f⇤ and there exists a dual optimal
solution.

(b) f⇤ = q⇤, and (x⇤, µ⇤,⌃⇤) are a primal and
dual optimal solution pair if and only if x⇤

is feasible, µ⇤ ≥ 0, and

x⇤ arg min L(x, µ⇤,⌃⇤), µ⇤jgj(x⇤) = 0, j
x X

⌘
⌦
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COUNTEREXAMPLE I

• Strong Duality Counterexample: Consider


minimize f(x) = e− x1x2

subject to x1 = 0, x ⌘ X = {x | x ≥ 0}

Here f⇤ = 1 and f is convex (its Hessian is > 0 in
the interior of X). The dual function is

 0 if ⌃ 0,
q(⌃) = inf

0

⇤
e− x1x2 + ⌃x1

x⇧

⌅
=
�

≥
−⇣ otherwise,

(when ⌃ ≥ 0, the expression in braces is nonneg-
ative for x ≥ 0 and can approach zero by taking
x1 → 0 and x1x2 →⇣). Thus q⇤ = 0.

• The relative interior assumption is violated.

• As predicted by the corresponding MC/MC
framework, the perturbation function

0 if u > 0,
p(u) = inf e− x1x2 =

x1=u, x⇧0

✏
1 if u = 0,
⇣ if u < 0,

is not lower semicontinuous at u = 0.
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COUNTEREXAMPLE VISUALIZATION
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p(u) = inf
x1=u, x⇤0

e−
√

x1x2 =

⇤ 0 if u > 0,
1 if u = 0,
⇧ if u < 0,

e−
√

x1x2

x2
x1 = u

• Connection with counterexample for preserva-
tion of closedness under partial minimization.
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COUNTEREXAMPLE II

• Existence of Solutions Counterexample:
Let X = �, f(x) = x, g(x) = x2. Then x⇤ = 0 is
the only feasible/optimal solution, and we have

1
q(µ) = inf

x⌦�
{x + µx2} = − ,

4µ
 µ > 0,

and q(µ) = −⇣ for µ ⌥ 0, so that q⇤ = f⇤ = 0.
However, there is no µ⇤ ≥ 0 such that q(µ⇤) =
q⇤ = 0.

• The perturbation function is

� ⌧
− u if up(u) = inf x =

x2 u

≥ 0,
⇣ if u < 0.⌅

u

p(u)

0

epi(p)
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FENCHEL DUALITY FRAMEWORK

• Consider the problem

minimize f1(x) + f2(x)

subject to x ⌘ �n,

where f1 : �n → (−⇣,⇣] and f2 : �n → (−⇣,⇣]
are closed proper convex functions.

• Convert to the equivalent problem

minimize f1(x1) + f2(x2)

subject to x1 = x2, x1 ⌘ dom(f1), x2 ⌘ dom(f2)

• The dual function is

q(⌥) = inf f
1

(x
1

) + f
2

(x
2

) + ⌥⇧(x
2

x
1

)
x1⌥dom(

⇤
f1), x2⌥dom(f2)

⇤
−

= inf f
1

(x
1

)− ⌥⇧x
1

⌅
+ inf f

x1⌥ n x2⌥ n

⇤
2

(x
2

) + ⌥⇧x
2

• Dual problem: max {−f (⌃) − f =

⌅

⌅ 1 2 (−⌃)}
−min⌅{−q(⌃)} or

minimize f 
1 (⌃) + f 

2 (−⌃)

subject to ⌃ ⌘ �n,

where f 
1 and f 

2 are the conjugates.

◆ ◆
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FENCHEL DUALITY THEOREM

• Consider the Fenchel framework:

(a) If f⇤ is finite and ri
�
dom(f1)

⇥
⌫ri

Ø

�
dom(f2)

⇥
=

, then f⇤ = q⇤ and there exists at least one
dual optimal solution.

(b) There holds f⇤ = q⇤, and (x⇤,⌃⇤) is a primal
and dual optimal solution pair if and only if

x⇥ ✏ arg min f
1

(x) x⇧⌥⇥ , x⇥ arg min f
2

(x)+x⇧⌥⇥
x⌥ n

⇤
−

⌅
✏

x⌥ n

⇤ ⌅

Proof: For strong duality use the equality con-
strained problem

minimize f1(x1) + f2(x2)

subject to x1 = x2, x1 ⌘ dom(f1), x2 ⌘ dom(f2)

and the fact

ri
�
dom(f1)⇤dom(f2)

⇥
= ri

�
dom(f1)

⇥
⇤
�
dom(f2)

to satisfy the relative interior condition.

⇥

For part (b), apply the optimality conditions
(primal and dual feasibility, and Lagrangian opti-
mality).

✓
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GEOMETRIC INTERPRETATION

Slope

Slope

x x

f1(x)

f2(x)
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1 ()

f
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• When dom(f1) = dom(f2) = �n, and f1 and
f2 are differentiable, the optimality condition is
equivalent to

⌃⇤ = ∇f1(x⇤) = −∇f2(x⇤)

• By reversing the roles of the (symmetric) primal
and dual problems, we obtain alternative criteria
for strong duality: if q⇤ is finite and ri

�
dom(f 

1 )
⇥

�
 
⇥ ⌫

ri −dom(f2 ) = Ø, then f⇤ = q⇤ and there exists
at least one primal optimal solution.

✓
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CONIC PROBLEMS

• A conic problem is to minimize a convex func-
tion f : �n → (−⇣,⇣] subject to a cone con-
straint.

• The most useful/popular special cases:

− Linear-conic programming

− Second order cone programming

− Semidefinite programming

involve minimization of a linear function over the
intersection of an a⌅ne set and a cone.

• Can be analyzed as a special case of Fenchel
duality.

• There are many interesting applications of conic
problems, including in discrete optimization.

◆
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CONIC DUALITY

• Consider minimizing f(x) over x ⌘ C, where f :
�n → (−⇣,⇣] is a closed proper convex function
and C is a closed convex cone in �n.

• We apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
�

0 if x ⌘ C,
⇣ if x ⌘/ C.

The conjugates are

f⌥(⇤) = sup
⇤

⇤⇧x−f(x)
⌅

, f⌥ 0
1 2

(⇤) = sup ⇤⇧x =
n

�
if ⇤ ⌃ C⇥,

⇧ if ⇤ ⌃/ C ,x
⇥

⌥ x⌥C

where C⇤ = {⌃ | ⌃�x ⌥ 0,  x ⌘ C}.
• The dual problem is

minimize f (⌃)

subject to ⌃ ˆ⌘ C,

where f is the conjugate of f and

Ĉ = {⌃ | ⌃�x ≥ 0,  x ⌘ C}.

Ĉ and ˆ−C are called the dual and polar cones.

◆
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CONIC DUALITY THEOREM

• Assume that the optimal value of the primal
conic problem is finite, and that

ri
�
dom(f)

Then, there is no dualit

⇥
⌫ ri(C) = Ø.

y gap and the dual problem
has an optimal solution.

• Using the symmetry of the primal and dual
problems, we also obtain that there is no duality
gap and the primal problem has an optimal solu-
tion if the optimal value of the dual conic problem
is finite, and

ri
�
dom(f )

⇥
⌫ ri(Ĉ) = Ø.

✓

✓
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LINEAR CONIC PROGRAMMING

• Let f be linear over its domain, i.e.,

�
c�x if x ⌘ X,

f(x) = ⇣ if x ⌘/ X,

where c is a vector, and X = b+S is an a⌅ne set.

• Primal problem is

minimize c�x

subject to x− b ⌘ S, x ⌘ C.

• We have

f (⌃) = sup (⌃ c)�x = sup(⌃ c)�(y + b)
x�−b⌦S

−
y S

−
⌦

(⌃− c)�b if ⌃− c ⌘ S⊥,= ⇣ if ⌃− c /⌘ S.

• Dual problem is equivalent to

minimize b�⌃

subject to ⌃ c S , ⌃ C.ˆ− ⌘ ⊥ ⌘

• If X ⌫ ri(C) = Ø, there is no duality gap an
there exists a dual optimal solution.

d
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ANOTHER APPROACH TO DUALITY

• Consider the problem

minimize f(x)

subject to x ⌘ X, gj(x) ⌥ 0, j = 1, . . . , r

and perturbation fn p(u) = infx⌦X, g(x) f⌅u (x)

• Recall the MC/MC framework with M = epi(p).
Assuming that p is convex and f⇤ < ⇣, by 1st
MC/MC theorem, we have f⇤ = q⇤ if and only if
p is lower semicontinuous at 0.

• Duality Theorem: Assume that X, f , and gj

are closed convex, and the feasible set is nonempty
and compact. Then f⇤ = q⇤ and the set of optimal
primal solutions is nonempty and compact.

Proof: Use partial minimization theory w/ the
function

( ) =
�

f(x) if x ⌘ X, g(x)F x, u ⌥ u,
⇣ otherwise.

p is obtained by the partial minimization:

p(u) = inf F (x, u).
x⌦�n

Under the given assumption, p is closed convex.
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