LECTURE 12

LECTURE OUTLINE

- Subgradients
- Fenchel inequality
- Sensitivity in constrained optimization
- Subdifferential calculus
- Optimality conditions

Reading: Section 5.4

SUBGRADIENTS

- Let $f: \Re^{n} \mapsto(-\infty, \infty]$ be a convex function. A vector $g \in \Re^{n}$ is a subgradient of f at a point $x \in \operatorname{dom}(f)$ if

$$
f(z) \geq f(x)+(z-x)^{\prime} g, \quad \forall z \in \Re^{n}
$$

- Support Hyperplane Interpretation: g is a subgradient if and only if

$$
f(z)-z^{\prime} g \geq f(x)-x^{\prime} g, \quad \forall z \in \Re^{n}
$$

so g is a subgradient at x if and only if the hyperplane in \Re^{n+1} that has normal $(-g, 1)$ and passes through $(x, f(x))$ supports the epigraph of f.

- The set of all subgradients at x is the subdifferential of f at x, denoted $\partial f(x)$.
- By convention $\partial f(x)=\varnothing$ for $x \notin \operatorname{dom}(f)$.

EXAMPLES OF SUBDIFFERENTIALS

- Some examples:

- If f is differentiable, then $\partial f(x)=\{\nabla f(x)\}$. Proof: If $g \in \partial f(x)$, then

$$
f(x+z) \geq f(x)+g^{\prime} z, \quad \forall z \in \Re^{n}
$$

Apply this with $z=\gamma(\nabla f(x)-g), \gamma \in \Re$, and use 1st order Taylor series expansion to obtain

$$
\|\nabla f(x)-g\|^{2} \leq-o(\gamma) / \gamma, \quad \forall \gamma<0
$$

EXISTENCE OF SUBGRADIENTS

- Let $f: \Re^{n} \mapsto(-\infty, \infty]$ be proper convex.
- Consider MC/MC with

$$
M=\operatorname{epi}\left(f_{x}\right), \quad f_{x}(z)=f(x+z)-f(x)
$$

- By 2nd MC/MC Duality Theorem, $\partial f(x)$ is nonempty and compact if and only if x is in the interior of $\operatorname{dom}(f)$.
- More generally: for every $x \in \operatorname{ri}(\operatorname{dom}(f))$,

$$
\partial f(x)=S^{\perp}+G,
$$

where:

- S is the subspace that is parallel to the affine hull of $\operatorname{dom}(f)$
$-G$ is a nonempty and compact set.

EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

- Let C be a convex set, and δ_{C} be its indicator function.
- For $x \notin C, \partial \delta_{C}(x)=\emptyset$ (by convention).
- For $x \in C$, we have $g \in \partial \delta_{C}(x)$ iff

$$
\delta_{C}(z) \geq \delta_{C}(x)+g^{\prime}(z-x), \quad \forall z \in C,
$$

or equivalently $g^{\prime}(z-x) \leq 0$ for all $z \in C$. Thus $\partial \delta_{C}(x)$ is the normal cone of C at x, denoted $N_{C}(x)$:

$$
N_{C}(x)=\left\{g \mid g^{\prime}(z-x) \leq 0, \forall z \in C\right\} .
$$

EXAMPLE: POLYHEDRAL CASE

- For the case of a polyhedral set

$$
C=\left\{x \mid a_{i}^{\prime} x \leq b_{i}, i=1, \ldots, m\right\}
$$

we have

$$
N_{C}(x)= \begin{cases}\{0\} & \text { if } x \in \operatorname{int}(C) \\ \operatorname{cone}\left(\left\{a_{i} \mid a_{i}^{\prime} x=b_{i}\right\}\right) & \text { if } x \notin \operatorname{int}(C)\end{cases}
$$

- Proof: Given x, disregard inequalities with $a_{i}^{\prime} x<b_{i}$, and translate C to move x to 0 , so it becomes a cone. The polar cone is $N_{C}(x)$.

FENCHEL INEQUALITY

- Let $f: \Re^{n} \mapsto(-\infty, \infty]$ be proper convex and let $f \star$ be its conjugate. Using the definition of conjugacy, we have Fenchel's inequality:

$$
x^{\prime} y \leq f(x)+f^{\star}(y), \quad \forall x \in \Re^{n}, y \in \Re^{n} .
$$

- Conjugate Subgradient Theorem: The following two relations are equivalent for a pair of vectors (x, y) :
(i) $x^{\prime} y=f(x)+f^{\star}(y)$.
(ii) $y \in \partial f(x)$.

If f is closed, (i) and (ii) are equivalent to (iii) $x \in \partial f^{\star}(y)$.

MINIMA OF CONVEX FUNCTIONS

- Application: Let f be closed proper convex and let X^{*} be the set of minima of f over \Re^{n}. Then:
(a) $X^{*}=\partial f^{\star}(0)$.
(b) X^{*} is nonempty if $0 \in \operatorname{ri}\left(\operatorname{dom}\left(f^{\star}\right)\right)$.
(c) X^{*} is nonempty and compact if and only if $0 \in \operatorname{int}\left(\operatorname{dom}\left(f^{\star}\right)\right)$.

Proof: (a) We have $x^{*} \in X^{*}$ iff $f(x) \geq f\left(x^{*}\right)$ for all $x \in \Re^{n}$. So
$x^{*} \in X^{*} \quad$ iff $\quad 0 \in \partial f\left(x^{*}\right) \quad$ iff $\quad x^{*} \in \partial f \star(0)$
where:

- 1st relation follows from the subgradient inequality
- 2nd relation follows from the conjugate subgradient theorem
(b) $\partial f^{\star}(0)$ is nonempty if $0 \in \operatorname{ri}\left(\operatorname{dom}\left(f^{\star}\right)\right)$.
(c) $\partial f^{\star}(0)$ is nonempty and compact if and only if $0 \in \operatorname{int}\left(\operatorname{dom}\left(f^{\star}\right)\right)$. Q.E.D.

SENSITIVITY INTERPRETATION

- Consider $\mathrm{MC} / \mathrm{MC}$ for the case $M=\operatorname{epi}(p)$.
- Dual function is

$$
q(\mu)=\inf _{u \in \Re^{m}}\left\{p(u)+\mu^{\prime} u\right\}=-p^{\star}(-\mu),
$$

where p^{\star} is the conjugate of p.

- Assume p is proper convex and strong duality holds, so $p(0)=w^{*}=q^{*}=\sup _{\mu \in \Re^{m}}\left\{-p^{\star}(-\mu)\right\}$. Let Q^{*} be the set of dual optimal solutions,

$$
Q^{*}=\left\{\mu^{*} \mid p(0)+p^{\star}\left(-\mu^{*}\right)=0\right\} .
$$

From Conjugate Subgradient Theorem, $\mu^{*} \in Q^{*}$ if and only if $-\mu^{*} \in \partial p(0)$, i.e., $Q^{*}=-\partial p(0)$.

- If p is convex and differentiable at $0,-\nabla p(0)$ is equal to the unique dual optimal solution μ^{*}.
- Constrained optimization example:

$$
p(u)=\inf _{x \in X, g(x) \leq u} f(x),
$$

If p is convex and differentiable,

$$
\mu_{j}^{*}=-\frac{\partial p(0)}{\partial u_{j}}, \quad j=1, \ldots, r .
$$

EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION

- Consider the support function $\sigma_{X}(y)$ of a set X. To calculate $\partial \sigma_{X}(\bar{y})$ at some \bar{y}, we introduce

$$
r(y)=\sigma_{X}(y+\bar{y}), \quad y \in \Re^{n} .
$$

- We have $\partial \sigma_{X}(\bar{y})=\partial r(0)=\arg \min _{x \in \Re^{n}} r^{\star}(x)$.
- We have $r^{\star}(x)=\sup _{y \in \Re^{n}}\left\{y^{\prime} x-r(y)\right\}$, or

$$
r^{\star}(x)=\sup _{y \in \Re^{n}}\left\{y^{\prime} x-\sigma_{X}(y+\bar{y})\right\}=\delta(x)-\bar{y}^{\prime} x,
$$

where δ is the indicator function of $\mathrm{cl}(\operatorname{conv}(X))$.

- Hence $\partial \sigma_{X}(\bar{y})=\arg \min _{x \in \Re^{n}}\left\{\delta(x)-\bar{y}^{\prime} x\right\}$, or

$$
\partial \sigma_{X}(\bar{y})=\arg \max _{x \in \operatorname{cl}(\operatorname{conv}(X))} \bar{y}^{\prime} x
$$

EXAMPLE: SUBDIFF. OF POLYHEDRAL FN

- Let

$$
f(x)=\max \left\{a_{1}^{\prime} x+b_{1}, \ldots, a_{r}^{\prime} x+b_{r}\right\} .
$$

- For a fixed $\bar{x} \in \Re^{n}$, consider

$$
A_{\bar{x}}=\left\{j \mid a_{j}^{\prime} \bar{x}+b_{j}=f(\bar{x})\right\}
$$

and the function $r(x)=\max \left\{a_{j}^{\prime} x \mid j \in A_{\bar{x}}\right\}$.

- It can be seen that $\partial f(\bar{x})=\partial r(0)$.
- Since r is the support function of the finite set $\left\{a_{j} \mid j \in A_{\bar{x}}\right\}$, we see that

$$
\partial f(\bar{x})=\partial r(0)=\operatorname{conv}\left(\left\{a_{j} \mid j \in A_{\bar{x}}\right\}\right)
$$

CHAIN RULE

- Let $f: \Re^{m} \mapsto(-\infty, \infty]$ be convex, and A be a matrix. Consider $F(x)=f(A x)$ and assume that F is proper. If either f is polyhedral or else Range $(A) \cap \operatorname{ri}(\operatorname{dom}(f)) \neq \varnothing$, then

$$
\partial F(x)=A^{\prime} \partial f(A x), \quad \forall x \in \Re^{n}
$$

Proof: Showing $\partial F(x) \supset A^{\prime} \partial f(A x)$ is simple and does not require the relative interior assumption. For the reverse inclusion, let $d \in \partial F(x)$ so $F(z) \geq$ $F(x)+(z-x)^{\prime} d \geq 0$ or $f(A z)-z^{\prime} d \geq f(A x)-x^{\prime} d$ for all z, so $(A x, x)$ solves

$$
\begin{array}{ll}
\operatorname{minimize} & f(y)-z^{\prime} d \\
\text { subject to } & y \in \operatorname{dom}(f), \quad A z=y
\end{array}
$$

If $R(A) \cap \operatorname{ri}(\operatorname{dom}(f)) \neq \varnothing$, by strong duality theorem, there is a dual optimal solution λ, such that $(A x, x) \in \arg \min _{y \in \Re^{m}, z \in \Re^{n}}\left\{f(y)-z^{\prime} d+\lambda^{\prime}(A z-y)\right\}$ Since the min over z is unconstrained, we have $d=A^{\prime} \lambda$, so $A x \in \arg \min _{y \in \Re^{m}}\left\{f(y)-\lambda^{\prime} y\right\}$, or

$$
f(y) \geq f(A x)+\lambda^{\prime}(y-A x), \quad \forall y \in \Re^{m}
$$

Hence $\lambda \in \partial f(A x)$, so that $d=A^{\prime} \lambda \in A^{\prime} \partial f(A x)$. It follows that $\partial F(x) \subset A^{\prime} \partial f(A x)$. In the polyhedral case, $\operatorname{dom}(f)$ is polyhedral. Q.E.D.

SUM OF FUNCTIONS

- Let $f_{i}: \Re^{n} \mapsto(-\infty, \infty], i=1, \ldots, m$, be proper convex functions, and let

$$
F=f_{1}+\cdots+f_{m} .
$$

- Assume that $\cap_{1=1}^{m}$ ri $\left(\operatorname{dom}\left(f_{i}\right)\right) \neq \emptyset$.
- Then

$$
\partial F(x)=\partial f_{1}(x)+\cdots+\partial f_{m}(x), \quad \forall x \in \Re^{n} .
$$

Proof: We can write F in the form $F(x)=f(A x)$, where A is the matrix defined by $A x=(x, \ldots, x)$, and $f: \Re^{m n} \mapsto(-\infty, \infty]$ is the function

$$
f\left(x_{1}, \ldots, x_{m}\right)=f_{1}\left(x_{1}\right)+\cdots+f_{m}\left(x_{m}\right) .
$$

Use the proof of the chain rule.

- Extension: If for some k, the functions $f_{i}, i=$ $1, \ldots, k$, are polyhedral, it is sufficient to assume

$$
\left(\cap_{i=1}^{k} \operatorname{dom}\left(f_{i}\right)\right) \cap\left(\cap_{i=k+1}^{m} \operatorname{ri}\left(\operatorname{dom}\left(f_{i}\right)\right)\right) \neq \varnothing .
$$

CONSTRAINED OPTIMALITY CONDITION

- Let $f: \Re^{n} \mapsto(-\infty, \infty]$ be proper convex, let X be a convex subset of \Re^{n}, and assume that one of the following four conditions holds:
(i) $\operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}(X) \neq \varnothing$.
(ii) f is polyhedral and $\operatorname{dom}(f) \cap \operatorname{ri}(X) \neq \varnothing$.
(iii) X is polyhedral and $\operatorname{ri}(\operatorname{dom}(f)) \cap X \neq \varnothing$.
(iv) f and X are polyhedral, and $\operatorname{dom}(f) \cap X \neq \varnothing$.

Then, a vector x^{*} minimizes f over X iff there exists $g \in \partial f\left(x^{*}\right)$ such that $-g$ belongs to the normal cone $N_{X}\left(x^{*}\right)$, i.e.,

$$
g^{\prime}\left(x-x^{*}\right) \geq 0, \quad \forall x \in X
$$

Proof: x^{*} minimizes

$$
F(x)=f(x)+\delta_{X}(x)
$$

if and only if $0 \in \partial F\left(x^{*}\right)$. Use the formula for subdifferential of sum. Q.E.D.

ILLUSTRATION OF OPTIMALITY CONDITION

- In the figure on the left, f is differentiable and the condition is that

$$
-\nabla f\left(x^{*}\right) \in N_{C}\left(x^{*}\right)
$$

which is equivalent to

$$
\nabla f\left(x^{*}\right)^{\prime}\left(x-x^{*}\right) \geq 0, \quad \forall x \in X
$$

- In the figure on the right, f is nondifferentiable, and the condition is that

$$
-g \in N_{C}\left(x^{*}\right) \quad \text { for some } g \in \partial f\left(x^{*}\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

