LECTURE 12

LECTURE OUTLINE

- Subgradients
- Fenchel inequality
- Sensitivity in constrained optimization
- Subdifferential calculus
- Optimality conditions

Reading: Section 5.4

SUBGRADIENTS

• Let $f : \Re^n \mapsto (-\infty, \infty]$ be a convex function. A vector $g \in \Re^n$ is a *subgradient* of f at a point $x \in \text{dom}(f)$ if

$$f(z) \ge f(x) + (z - x)'g, \qquad \forall \ z \in \Re^n$$

• **Support Hyperplane Interpretation:** g is a subgradient if and only if

$$f(z) - z'g \ge f(x) - x'g, \qquad \forall \ z \in \Re^n$$

so g is a subgradient at x if and only if the hyperplane in \Re^{n+1} that has normal (-g, 1) and passes through (x, f(x)) supports the epigraph of f.

• The set of all subgradients at x is the subdifferential of f at x, denoted $\partial f(x)$.

• By convention $\partial f(x) = \emptyset$ for $x \notin \operatorname{dom}(f)$.

EXAMPLES OF SUBDIFFERENTIALS

• Some examples:

• If f is differentiable, then $\partial f(x) = \{\nabla f(x)\}$. **Proof:** If $g \in \partial f(x)$, then

$$f(x+z) \ge f(x) + g'z, \qquad \forall \ z \in \Re^n.$$

Apply this with $z = \gamma (\nabla f(x) - g), \gamma \in \Re$, and use 1st order Taylor series expansion to obtain

$$\|\nabla f(x) - g\|^2 \le -o(\gamma)/\gamma, \qquad \forall \ \gamma < 0$$

EXISTENCE OF SUBGRADIENTS

- Let $f: \Re^n \mapsto (-\infty, \infty]$ be proper convex.
- Consider MC/MC with

$$M = epi(f_x), \qquad f_x(z) = f(x+z) - f(x)$$

• By 2nd MC/MC Duality Theorem, $\partial f(x)$ is nonempty and compact if and only if x is in the interior of dom(f).

• More generally: for every $x \in ri(dom(f))$,

$$\partial f(x) = S^{\perp} + G,$$

where:

- S is the subspace that is parallel to the affine hull of $\operatorname{dom}(f)$
- -G is a nonempty and compact set.

EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

- Let C be a convex set, and δ_C be its indicator function.
- For $x \notin C$, $\partial \delta_C(x) = \emptyset$ (by convention).
- For $x \in C$, we have $g \in \partial \delta_C(x)$ iff

$$\delta_C(z) \ge \delta_C(x) + g'(z-x), \quad \forall \ z \in C,$$

or equivalently $g'(z - x) \leq 0$ for all $z \in C$. Thus $\partial \delta_C(x)$ is the normal cone of C at x, denoted $N_C(x)$:

$$N_C(x) = \{ g \mid g'(z - x) \le 0, \, \forall \, z \in C \}.$$

EXAMPLE: POLYHEDRAL CASE

• For the case of a polyhedral set

$$C = \{ x \mid a'_i x \le b_i, \ i = 1, \dots, m \},\$$

we have

$$N_C(x) = \begin{cases} \{0\} & \text{if } x \in \operatorname{int}(C), \\ \operatorname{cone}(\{a_i \mid a'_i x = b_i\}) & \text{if } x \notin \operatorname{int}(C). \end{cases}$$

• **Proof:** Given x, disregard inequalities with $a'_i x < b_i$, and translate C to move x to 0, so it becomes a cone. The polar cone is $N_C(x)$.

FENCHEL INEQUALITY

• Let $f : \Re^n \mapsto (-\infty, \infty]$ be proper convex and let f^* be its conjugate. Using the definition of conjugacy, we have *Fenchel's inequality*:

 $x'y \le f(x) + f^{\star}(y), \qquad \forall \ x \in \Re^n, \ y \in \Re^n.$

• Conjugate Subgradient Theorem: The following two relations are equivalent for a pair of vectors (x, y):

(i)
$$x'y = f(x) + f^{\star}(y)$$
.

(ii)
$$y \in \partial f(x)$$
.

If f is closed, (i) and (ii) are equivalent to (iii) $x \in \partial f^*(y)$.

MINIMA OF CONVEX FUNCTIONS

• Application: Let f be closed proper convex and let X^* be the set of minima of f over \Re^n . Then:

- (a) $X^* = \partial f^*(0)$.
- (b) X^* is nonempty if $0 \in \operatorname{ri}(\operatorname{dom}(f^*))$.
- (c) X^* is nonempty and compact if and only if $0 \in int(dom(f^*))$.

Proof: (a) We have $x^* \in X^*$ iff $f(x) \ge f(x^*)$ for all $x \in \Re^n$. So

$$x^* \in X^*$$
 iff $0 \in \partial f(x^*)$ iff $x^* \in \partial f^*(0)$

where:

- 1st relation follows from the subgradient inequality
- 2nd relation follows from the conjugate subgradient theorem

(b) $\partial f^{\star}(0)$ is nonempty if $0 \in \operatorname{ri}(\operatorname{dom}(f^{\star}))$.

(c) $\partial f^{\star}(0)$ is nonempty and compact if and only if $0 \in int(dom(f^{\star}))$. **Q.E.D.**

SENSITIVITY INTERPRETATION

- Consider MC/MC for the case M = epi(p).
- Dual function is

$$q(\mu) = \inf_{u \in \Re^m} \{ p(u) + \mu' u \} = -p^*(-\mu),$$

where p^* is the conjugate of p.

• Assume p is proper convex and strong duality holds, so $p(0) = w^* = q^* = \sup_{\mu \in \Re^m} \{-p^*(-\mu)\}$. Let Q^* be the set of dual optimal solutions,

$$Q^* = \{\mu^* \mid p(0) + p^*(-\mu^*) = 0\}.$$

From Conjugate Subgradient Theorem, $\mu^* \in Q^*$ if and only if $-\mu^* \in \partial p(0)$, i.e., $Q^* = -\partial p(0)$.

• If p is convex and differentiable at $0, -\nabla p(0)$ is equal to the unique dual optimal solution μ^* .

• Constrained optimization example:

$$p(u) = \inf_{x \in X, \ g(x) \le u} f(x),$$

If p is convex and differentiable,

$$\mu_j^* = -\frac{\partial p(0)}{\partial u_j}, \qquad j = 1, \dots, r.$$

EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION

• Consider the support function $\sigma_X(y)$ of a set X. To calculate $\partial \sigma_X(\overline{y})$ at some \overline{y} , we introduce

$$r(y) = \sigma_X(y + \overline{y}), \qquad y \in \Re^n.$$

- We have $\partial \sigma_X(\overline{y}) = \partial r(0) = \arg \min_{x \in \Re^n} r^*(x).$
- We have $r^{\star}(x) = \sup_{y \in \Re^n} \{y'x r(y)\}$, or

$$r^{\star}(x) = \sup_{y \in \Re^n} \{ y'x - \sigma_X(y + \overline{y}) \} = \delta(x) - \overline{y}'x,$$

where δ is the indicator function of cl(conv(X)).

• Hence $\partial \sigma_X(\overline{y}) = \arg \min_{x \in \Re^n} \{\delta(x) - \overline{y}'x\}$, or

$$\partial \sigma_X(\overline{y}) = \arg \max_{x \in \mathrm{cl}(\mathrm{conv}(X))} \overline{y}' x$$

EXAMPLE: SUBDIFF. OF POLYHEDRAL FN

• Let

$$f(x) = \max\{a'_1 x + b_1, \dots, a'_r x + b_r\}.$$

• For a fixed $\overline{x} \in \Re^n$, consider

$$A_{\overline{x}} = \left\{ j \mid a'_j \overline{x} + b_j = f(\overline{x}) \right\}$$

and the function $r(x) = \max\{a'_j x \mid j \in A_{\overline{x}}\}.$

- It can be seen that $\partial f(\overline{x}) = \partial r(0)$.
- Since r is the support function of the finite set $\{a_j \mid j \in A_{\overline{x}}\}$, we see that

$$\partial f(\overline{x}) = \partial r(0) = \operatorname{conv}(\{a_j \mid j \in A_{\overline{x}}\})$$

CHAIN RULE

• Let $f : \Re^m \mapsto (-\infty, \infty]$ be convex, and A be a matrix. Consider F(x) = f(Ax) and assume that F is proper. If either f is polyhedral or else $\operatorname{Range}(A) \cap \operatorname{ri}(\operatorname{dom}(f)) \neq \emptyset$, then

$$\partial F(x) = A' \partial f(Ax), \qquad \forall \ x \in \Re^n.$$

Proof: Showing $\partial F(x) \supset A' \partial f(Ax)$ is simple and does not require the relative interior assumption. For the reverse inclusion, let $d \in \partial F(x)$ so $F(z) \ge$ $F(x) + (z - x)'d \ge 0$ or $f(Az) - z'd \ge f(Ax) - x'd$ for all z, so (Ax, x) solves

minimize
$$f(y) - z'd$$

subject to $y \in \text{dom}(f)$, $Az = y$.

If $R(A) \cap \operatorname{ri}(\operatorname{dom}(f)) \neq \emptyset$, by strong duality theorem, there is a dual optimal solution λ , such that $(Ax, x) \in \arg \min_{y \in \Re^m, z \in \Re^n} \{f(y) - z'd + \lambda'(Az - y)\}$ Since the min over z is unconstrained, we have $d = A'\lambda$, so $Ax \in \arg \min_{y \in \Re^m} \{f(y) - \lambda'y\}$, or

$$f(y) \ge f(Ax) + \lambda'(y - Ax), \qquad \forall \ y \in \Re^m$$

Hence $\lambda \in \partial f(Ax)$, so that $d = A'\lambda \in A'\partial f(Ax)$. It follows that $\partial F(x) \subset A'\partial f(Ax)$. In the polyhedral case, dom(f) is polyhedral. **Q.E.D.**

SUM OF FUNCTIONS

• Let $f_i : \Re^n \mapsto (-\infty, \infty], i = 1, ..., m$, be proper convex functions, and let

$$F = f_1 + \dots + f_m.$$

• Assume that $\cap_{i=1}^{m} \operatorname{ri}(\operatorname{dom}(f_i)) \neq \emptyset$.

• Then

$$\partial F(x) = \partial f_1(x) + \dots + \partial f_m(x), \qquad \forall x \in \Re^n.$$

Proof: We can write F in the form F(x) = f(Ax), where A is the matrix defined by $Ax = (x, \ldots, x)$, and $f : \Re^{mn} \mapsto (-\infty, \infty]$ is the function

$$f(x_1, \dots, x_m) = f_1(x_1) + \dots + f_m(x_m).$$

Use the proof of the chain rule.

• Extension: If for some k, the functions f_i , $i = 1, \ldots, k$, are polyhedral, it is sufficient to assume

$$\left(\bigcap_{i=1}^{k} \operatorname{dom}(f_{i})\right) \cap \left(\bigcap_{i=k+1}^{m} \operatorname{ri}(\operatorname{dom}(f_{i}))\right) \neq \emptyset.$$

CONSTRAINED OPTIMALITY CONDITION

• Let $f: \Re^n \mapsto (-\infty, \infty]$ be proper convex, let X be a convex subset of \Re^n , and assume that one of the following four conditions holds:

(i) $\operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}(X) \neq \emptyset$.

(ii) f is polyhedral and $\operatorname{dom}(f) \cap \operatorname{ri}(X) \neq \emptyset$.

(iii) X is polyhedral and $\operatorname{ri}(\operatorname{dom}(f)) \cap X \neq \emptyset$.

(iv) f and X are polyhedral, and $\operatorname{dom}(f) \cap X \neq \emptyset$. Then, a vector x^* minimizes f over X iff there exists $g \in \partial f(x^*)$ such that -g belongs to the normal cone $N_X(x^*)$, i.e.,

$$g'(x - x^*) \ge 0, \qquad \forall \ x \in X.$$

Proof: x^* minimizes

$$F(x) = f(x) + \delta_X(x)$$

if and only if $0 \in \partial F(x^*)$. Use the formula for subdifferential of sum. **Q.E.D.**

ILLUSTRATION OF OPTIMALITY CONDITION

• In the figure on the left, f is differentiable and the condition is that

$$-\nabla f(x^*) \in N_C(x^*),$$

which is equivalent to

$$\nabla f(x^*)'(x-x^*) \ge 0, \qquad \forall \ x \in X.$$

• In the figure on the right, f is nondifferentiable, and the condition is that

$$-g \in N_C(x^*)$$
 for some $g \in \partial f(x^*)$.

6.253 Convex Analysis and Optimization Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.