
LECTURE 13

LECTURE OUTLINE

• Problem Structures

− Separable problems

− Integer/discrete problems – Branch-and-bound

− Large sum problems

− Problems with many constraints

• Conic Programming

− Second Order Cone Programming

− Semidefinite Programming

All figures are courtesy of Athena Scientific, and are used with permission.
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SEPARABLE PROBLEMS

• Consider the problem

m

minimize
⌧

fi(xi)
i=1

⌧m
s. t. gji(xi) 0

i=1

⌥ , j = 1, . . . , r, xi ⌘ Xi,  i

where f : �n n
i i → � and gji : � i → � are given

functions, and Xi are given subsets of �ni .

• Form the dual problem

m

maximize
⌧ m

qi(µ) ⇧
⌧

✏
r

inf fi(xi) + µjgji(xi)
xi Xi

i=1 i=1

⌥

⌧

j=1

⇣

subject to µ ⌥ 0

• Important point: The calculation of the dual
function has been decomposed into n simpler
minimizations. Moreover, the calculation of dual
subgradients is a byproduct of these mini-
mizations (this will be discussed later)

• Another important point: If Xi is a discrete
set (e.g., Xi = {0, 1}), the dual optimal value is
a lower bound to the optimal primal value. It is
still useful in a branch-and-bound scheme.

◆ ◆
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LARGE SUM PROBLEMS

• Consider cost function of the form
m

f(x) =
⌧

fi(x), m is very large,
i=1

where fi : �n → � are convex. Some examples:

• Dual cost of a separable problem.

• Data analysis/machine learning: x is pa-
rameter vector of a model; each fi corresponds to
error between data and output of the model.

− Least squares problems (fi quadratic).

− *1-regularization (least squares plus *1 penalty):
⌧m ⌧n

min (a�jxx
j=1

− bj)2 + ⇤ xi

i=1

| |

The nondifferentiable penalty tends to set a large
number of components of x to 0.

• Min of an expected value E F (x,w) , where
w is a random variable taking a
large number of values wi, i = 1, .

⇤

finite but

⌅

very
. . ,m, with cor-

responding probabilities  i.

• Stochastic
↵

programming:

min F1(x) + Ew{min F2(x, y, w)
x y

⌅�

Special methods, called incremental apply.

◆

•
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PROBLEMS WITH MANY CONSTRAINTS

• Problems of the form

minimize f(x)

subject to a�jx ⌥ bj , j = 1, . . . , r,

where r: very large.

• One possibility is a penalty function approach:
Replace problem with

r

min f(x) + c P a
n

⌧
( �jx

x⌦�
j=1

− bj)

where P (·) is a scalar penalty function satisfying
P (t) = 0 if t ⌥ 0, and P (t) > 0 if t > 0, and c is a
positive penalty parameter.

• Examples:

− The quadratic penalty P (t) = max{0, t} 2
.

− The nondifferentiable penalty P

�

(t) = max

⇥

{0, t}.
• Another possibility: Initially discard some of
the constraints, solve a less constrained problem,
and later reintroduce constraints that seem to be
violated at the optimum (outer approximation).

• Also inner approximation of the constraint set.
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CONIC PROBLEMS

• A conic problem is to minimize a convex func-
tion f : �n → (−⇣,⇣] subject to a cone con-
straint.

• The most useful/popular special cases:

− Linear-conic programming

− Second order cone programming

− Semidefinite programming

involve minimization of a linear function over the
intersection of an a⌅ne set and a cone.

• Can be analyzed as a special case of Fenchel
duality.

• There are many interesting applications of conic
problems, including in discrete optimization.

◆
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PROBLEM RANKING IN

INCREASING PRACTICAL DIFFICULTY

• Linear and (convex) quadratic programming.

− Favorable special cases (e.g., network flows).

• Second order cone programming.

• Semidefinite programming.

• Convex programming.

− Favorable special cases (e.g., network flows,
monotropic programming, geometric program-
ming).

• Nonlinear/nonconvex/continuous programming.

− Favorable special cases (e.g., twice differen-
tiable, quasi-convex programming).

− Unconstrained.

− Constrained.

• Discrete optimization/Integer programming

− Favorable special cases.
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CONIC DUALITY

• Consider minimizing f(x) over x ⌘ C, where f :
�n → (−⇣,⇣] is a closed proper convex function
and C is a closed convex cone in �n.

• We apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
�

0 if x ⌘ C,
⇣ if x ⌘/ C.

The conjugates are

f⌥ 0 if ⇤
1

(⇤) = sup
⇤ ,

⇤⇧x−f(x
⌅

, f⌥ C⇥
)

2

(⇤) = sup ⇤⇧x =
x⌥ n

x⌥C

�
⌃

⇧ if ⇤ ⌃/ C⇥,

where C⇤ = {⌃ | ⌃�x ⌥ 0,  x ⌘ C} is the polar
cone of C.

• The dual problem is

minimize f (⌃)

subject to ⌃ ˆ⌘ C,

where f is the conjugate of f and

Ĉ = {⌃ | ⌃�x ≥ 0,  x ⌘ C}.

Ĉ = C is called the dual cone.

◆

− ⇤
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LINEAR-CONIC PROBLEMS

• Let f be a⌅ne, f(x) = c�x, with dom(f) be-
ing an a⌅ne set, dom(f) = b + S, where S is a
subspace.

• The primal problem is

minimize c�x

subject to x− b ⌘ S, x ⌘ C.

• The conjugate is

f (⌃) = sup (⌃− c)�x = sup(⌃ )
x−b⌦S y S

− c �(y + b)

� ⌦

(⌃− c)�b if ⌃− c S
=

⌘ ⊥,
⇣ if ⌃− c /⌘ S⊥,

so the dual problem can be written as

minimize b�⌃

subject to ⌃− c ˆ⌘ S⊥, ⌃ ⌘ C.

• The primal and dual have the same form.

• If C is closed, the dual of the dual yields the
primal.
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SPECIAL LINEAR-CONIC FORMS

min c�x
Ax=b, x⌦C

⇐✏ max b�⌃,
c− ˆA0⌅⌦C

min c�x max b�⌃,
Ax−b⌦C

⇐✏
0⌅=c, ⌅⌦ ˆA C

where x ⌘ �n, ⌃ ⌘ �m, c ⌘ �n, b ⌘ �m, A : m⇤n.

• For the first relation, let x be such that Ax = b,
and write the problem on the left as

minimize c�x

subject to x− x ⌘ N(A), x ⌘ C

• The dual conic problem is

minimize x�µ

subject to µ− c ⌘ N(A)⊥, µ C.ˆ⌘
• Using N(A)⊥ = Ra(A�), write the constraints
as c− µ ⌘ −Ra(A�) = Ra(A�), µ ⌘ Ĉ, or

c− µ = A�⌃, µ ˆ⌘ C, for some ⌃ ⌘ �m.

• Change variables µ = c−A�⌃, write the dual as

minimize x�(c−A�⌃)

subject to c−A�⌃ ˆ⌘ C

discard the constant x�c, use the fact Ax = b, and
change from min to max.
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SOME EXAMPLES

• Nonnegative Orthant: C = {x | x ≥ 0}.
• The Second Order Cone: Let

C =
�

(x1, . . . , xn) | xn ≥
!

x2
1 + · · · + x2

n−1

�

x1

x2

• The Positive Semidefinite Cone: Consider
the space of symmetric n n matrices, viewed as
the space � 2n

⇤
with the inner product

n n

< X,Y >= trace(XY ) =

Let

⌧

i=1

⌧
xijyij

j=1

C be the cone of matrices that are positive
semidefinite.

All these are self-dual , i.e., C = C⇤ = Ĉ.

x3

• −
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SECOND ORDER CONE PROGRAMMING

• Second order cone programming is the linear-
conic problem

minimize c�x

subject to Aix− bi ⌘ Ci, i = 1, . . . ,m,

where c, bi are vectors, Ai are matrices, bi is a
vector in �ni , and

Ci : the second order cone of �ni

• The cone here is

C = C1 ⇤ · · ·⇤ Cm

x1

x2

x3
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SECOND ORDER CONE DUALITY

• Using the generic special duality form

min c�x max b�⌃,
Ax−b⌦C

⇐✏
0⌅=c, ⌅⌦ ˆA C

and self duality of C, the dual problem is

m

maximize
⌧

b�i⌃i

i=1

m

subject to
⌧

A�i⌃i = c, ⌃i

i=1

⌘ Ci, i = 1, . . . ,m,

where ⌃ = (⌃1, . . . ,⌃m).

• The duality theory is no more favorable than
the one for linear-conic problems.

• There is no duality gap if there exists a feasible
solution in the interior of the 2nd order cones Ci.

• Generally, 2nd order cone problems can be
recognized from the presence of norm or convex
quadratic functions in the cost or the constraint
functions.

• There are many applications.
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