LECTURE 14

LECTURE OUTLINE

- Conic programming
- Semidefinite programming
- Exact penalty functions
- Descent methods for convex/nondifferentiable optimization
- Steepest descent method

LINEAR-CONIC FORMS

$$
\begin{array}{ll}
\min _{A x=b, x \in C} c^{\prime} x & \Longleftrightarrow \\
\min _{A x-b \in C} c^{\prime} x & \Longleftrightarrow \\
\max ^{\prime}-A^{\prime} \lambda \in \hat{C} \\
\max ^{\prime} \lambda, \\
A^{\prime} \lambda=c, \lambda \in \hat{C}
\end{array} b^{\prime} \lambda,
$$

where $x \in \Re^{n}, \lambda \in \Re^{m}, c \in \Re^{n}, b \in \Re^{m}, A: m \times n$.

- Second order cone programming:
minimize $\quad c^{\prime} x$
subject to $A_{i} x-b_{i} \in C_{i}, i=1, \ldots, m$,
where c, b_{i} are vectors, A_{i} are matrices, b_{i} is a vector in $\Re^{n_{i}}$, and
C_{i} : the second order cone of $\Re^{n_{i}}$
- The cone here is $C=C_{1} \times \cdots \times C_{m}$
- The dual problem is
$\operatorname{maximize} \sum_{i=1}^{m} b_{i}^{\prime} \lambda_{i}$
subject to $\sum_{i=1}^{m} A_{i}^{\prime} \lambda_{i}=c, \quad \lambda_{i} \in C_{i}, i=1, \ldots, m$,
where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$.

EXAMPLE: ROBUST LINEAR PROGRAMMING

minimize $c^{\prime} x$
subject to $\quad a_{j}^{\prime} x \leq b_{j}, \quad \forall\left(a_{j}, b_{j}\right) \in T_{j}, \quad j=1, \ldots, r$,
where $c \in \Re^{n}$, and T_{j} is a given subset of \Re^{n+1}.

- We convert the problem to the equivalent form minimize $c^{\prime} x$ subject to $g_{j}(x) \leq 0, \quad j=1, \ldots, r$,
where $g_{j}(x)=\sup _{\left(a_{j}, b_{j}\right) \in T_{j}}\left\{a_{j}^{\prime} x-b_{j}\right\}$.
- For special choice where T_{j} is an ellipsoid,

$$
T_{j}=\left\{\left(\bar{a}_{j}+P_{j} u_{j}, \bar{b}_{j}+q_{j}^{\prime} u_{j}\right) \mid\left\|u_{j}\right\| \leq 1, u_{j} \in \Re^{n_{j}}\right\}
$$

we can express $g_{j}(x) \leq 0$ in terms of a SOC:

$$
\begin{aligned}
g_{j}(x) & =\sup _{\left\|u_{j}\right\| \leq 1}\left\{\left(\bar{a}_{j}+P_{j} u_{j}\right)^{\prime} x-\left(\bar{b}_{j}+q_{j}^{\prime} u_{j}\right)\right\} \\
& =\sup _{\left\|u_{j}\right\| \leq 1}\left(P_{j}^{\prime} x-q_{j}\right)^{\prime} u_{j}+\bar{a}_{j}^{\prime} x-\bar{b}_{j} \\
& =\left\|P_{j}^{\prime} x-q_{j}\right\|+\bar{a}_{j}^{\prime} x-\bar{b}_{j}
\end{aligned}
$$

Thus, $g_{j}(x) \leq 0 \operatorname{iff}\left(P_{j}^{\prime} x-q_{j}, \bar{b}_{j}-\bar{a}_{j}^{\prime} x\right) \in C_{j}$, where C_{j} is the SOC of $\Re^{n_{j}+1}$.

SEMIDEFINITE PROGRAMMING

- Consider the symmetric $n \times n$ matrices. Inner product $\langle X, Y\rangle=\operatorname{trace}(X Y)=\sum_{i, j=1}^{n} x_{i j} y_{i j}$.
- Let C be the cone of pos. semidefinite matrices.
- C is self-dual, and its interior is the set of positive definite matrices.
- Fix symmetric matrices D, A_{1}, \ldots, A_{m}, and vectors b_{1}, \ldots, b_{m}, and consider
minimize $<D, X>$
subject to $\left.<A_{i}, X\right\rangle=b_{i}, \quad i=1, \ldots, m, \quad X \in C$
- Viewing this as a linear-conic problem (the first special form), the dual problem (using also selfduality of C) is
$\operatorname{maximize} \quad \sum_{i=1}^{m} b_{i} \lambda_{i}$
subject to $D-\left(\lambda_{1} A_{1}+\cdots+\lambda_{m} A_{m}\right) \in C$
- There is no duality gap if there exists primal feasible solution that is pos. definite, or there exists $\bar{\lambda}$ such that $D-\left(\bar{\lambda}_{1} A_{1}+\cdots+\bar{\lambda}_{m} A_{m}\right)$ is pos. definite.

EXAMPLE: MINIMIZE THE MAXIMUM EIGENVALUE

- Given $n \times n$ symmetric matrix $M(\lambda)$, depending on a parameter vector λ, choose λ to minimize the maximum eigenvalue of $M(\lambda)$.
- We pose this problem as minimize z subject to maximum eigenvalue of $M(\lambda) \leq z$, or equivalently
minimize z
subject to $z I-M(\lambda) \in C$,
where I is the $n \times n$ identity matrix, and C is the semidefinite cone.
- If $M(\lambda)$ is an affine function of λ,

$$
M(\lambda)=D+\lambda_{1} M_{1}+\cdots+\lambda_{m} M_{m}
$$

the problem has the form of the dual semidefinite problem, with the optimization variables be$\operatorname{ing}\left(z, \lambda_{1}, \ldots, \lambda_{m}\right)$.

EXAMPLE: LOWER BOUNDS FOR DISCRETE OPTIMIZATION

- Quadr. problem with quadr. equality constraints minimize $\quad x^{\prime} Q_{0} x+a_{0}^{\prime} x+b_{0}$ subject to $x^{\prime} Q_{i} x+a_{i}^{\prime} x+b_{i}=0, \quad i=1, \ldots, m$, Q_{0}, \ldots, Q_{m} : symmetric (not necessarily ≥ 0).
- Can be used for discrete optimization. For example an integer constraint $x_{i} \in\{0,1\}$ can be expressed by $x_{i}^{2}-x_{i}=0$.
- The dual function is

$$
q(\lambda)=\inf _{x \in \Re^{n}}\left\{x^{\prime} Q(\lambda) x+a(\lambda)^{\prime} x+b(\lambda)\right\}
$$

where

$$
\begin{gathered}
Q(\lambda)=Q_{0}+\sum_{i=1}^{m} \lambda_{i} Q_{i} \\
a(\lambda)=a_{0}+\sum_{i=1}^{m} \lambda_{i} a_{i}, \quad b(\lambda)=b_{0}+\sum_{i=1}^{m} \lambda_{i} b_{i}
\end{gathered}
$$

- It turns out that the dual problem is equivalent to a semidefinite program ...

EXACT PENALTY FUNCTIONS

- We use Fenchel duality to derive an equivalence between a constrained convex optimization problem, and a penalized problem that is less constrained or is entirely unconstrained.
- We consider the problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in X, \quad g(x) \leq 0
\end{array}
$$

where $g(x)=\left(g_{1}(x), \ldots, g_{r}(x)\right), X$ is a convex subset of \Re^{n}, and $f: \Re^{n} \rightarrow \Re$ and $g_{j}: \Re^{n} \rightarrow \Re$ are real-valued convex functions.

- We introduce a convex function $P: \Re^{r} \mapsto \Re$, called penalty function, which satisfies
$P(u)=0, \forall u \leq 0, \quad P(u)>0$, if $u_{i}>0$ for some i
- We consider solving, in place of the original, the "penalized" problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+P(g(x)) \\
\text { subject to } & x \in X
\end{array}
$$

FENCHEL DUALITY

- We have

$$
\inf _{x \in X}\{f(x)+P(g(x))\}=\inf _{u \in \Re^{r}}\{p(u)+P(u)\}
$$

where $p(u)=\inf _{x \in X, g(x) \leq u} f(x)$ is the primal function.

- Assume $-\infty<q^{*}$ and $f^{*}<\infty$ so that p is proper (in addition to being convex).
- By Fenchel duality

$$
\inf _{u \in \Re^{r}}\{p(u)+P(u)\}=\sup _{\mu \geq 0}\{q(\mu)-Q(\mu)\}
$$

where for $\mu \geq 0$,

$$
q(\mu)=\inf _{x \in X}\left\{f(x)+\mu^{\prime} g(x)\right\}
$$

is the dual function, and Q is the conjugate convex function of P :

$$
Q(\mu)=\sup _{u \in \Re^{r}}\left\{u^{\prime} \mu-P(u)\right\}
$$

PENALTY CONJUGATES

- Important observation: For Q to be flat for some $\mu>0, P$ must be nondifferentiable at 0 .

FENCHEL DUALITY VIEW

- For the penalized and the original problem to have equal optimal values, Q must be "flat enough" so that some optimal dual solution μ^{*} minimizes Q, i.e., $0 \in \partial Q\left(\mu^{*}\right)$ or equivalently

$$
\mu^{*} \in \partial P(0)
$$

- True if $P(u)=c \sum_{j=1}^{r} \max \left\{0, u_{j}\right\}$ with $c \geq$ $\left\|\mu^{*}\right\|$ for some optimal dual solution μ^{*}.

DIRECTIONAL DERIVATIVES

- Directional derivative of a proper convex f :

$$
f^{\prime}(x ; d)=\lim _{\alpha \downarrow 0} \frac{f(x+\alpha d)-f(x)}{\alpha}, x \in \operatorname{dom}(f), d \in \Re^{n}
$$

- The ratio

$$
\frac{f(x+\alpha d)-f(x)}{\alpha}
$$

is monotonically nonincreasing as $\alpha \downarrow 0$ and converges to $f^{\prime}(x ; d)$.

- For all $x \in \operatorname{ri}(\operatorname{dom}(f)), f^{\prime}(x ; \cdot)$ is the support function of $\partial f(x)$.

STEEPEST DESCENT DIRECTION

- Consider unconstrained minimization of convex $f: \Re^{n} \mapsto \Re$.
- A descent direction d at x is one for which $f^{\prime}(x ; d)<0$, where

$$
f^{\prime}(x ; d)=\lim _{\alpha \downarrow 0} \frac{f(x+\alpha d)-f(x)}{\alpha}=\sup _{g \in \partial f(x)} d^{\prime} g
$$

is the directional derivative.

- Can decrease f by moving from x along descent direction d by small stepsize α.
- Direction of steepest descent solves the problem

$$
\begin{array}{ll}
\operatorname{minimize} & f^{\prime}(x ; d) \\
\text { subject to } & \|d\| \leq 1
\end{array}
$$

- Interesting fact: The steepest descent direction is $-g^{*}$, where g^{*} is the vector of minimum norm in $\partial f(x)$:

$$
\begin{aligned}
\min _{\|d\| \leq 1} f^{\prime}(x ; d) & =\min _{\|d\| \leq 1} \max _{g \in \partial f(x)} d^{\prime} g=\max _{g \in \partial f(x)} \min _{\|d\| \leq 1} d^{\prime} g \\
& =\max _{g \in \partial f(x)}(-\|g\|)=-\min _{g \in \partial f(x)}\|g\|
\end{aligned}
$$

STEEPEST DESCENT METHOD

- Start with any $x_{0} \in \Re^{n}$.
- For $k \geq 0$, calculate $-g_{k}$, the steepest descent direction at x_{k} and set

$$
x_{k+1}=x_{k}-\alpha_{k} g_{k}
$$

- Difficulties:
- Need the entire $\partial f\left(x_{k}\right)$ to compute g_{k}.
- Serious convergence issues due to discontinuity of $\partial f(x)$ (the method has no clue that $\partial f(x)$ may change drastically nearby).
- Example with α_{k} determined by minimization along $-g_{k}:\left\{x_{k}\right\}$ converges to nonoptimal point.

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

