LECTURE 16

LECTURE OUTLINE

- Approximate subgradient methods
- Approximation methods
- Cutting plane methods

All figures are courtesy of Athena Scientific, and are used with permission.

APPROXIMATE SUBGRADIENT METHODS

• Consider minimization of

$$f(x) = \sup_{z \in Z} \phi(x, z)$$

where $Z \subset \Re^m$ and $\phi(\cdot, z)$ is convex for all $z \in Z$ (dual minimization is a special case).

• To compute subgradients of f at $x \in \text{dom}(f)$, we find $z_x \in Z$ attaining the supremum above. Then

$$g_x \in \partial \phi(x, z_x) \qquad \Rightarrow \qquad g_x \in \partial f(x)$$

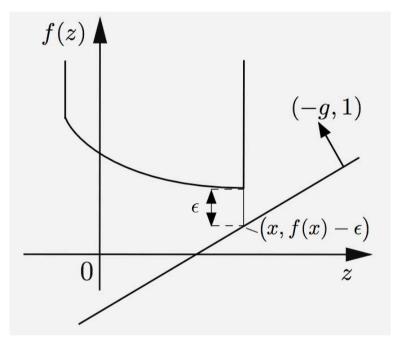
• Potential difficulty: For subgradient method, we need to solve exactly the above maximization over $z \in Z$.

• We consider methods that use "approximate" subgradients that can be computed more easily.

ϵ -SUBDIFFERENTIAL

• Fot a proper convex $f : \Re^n \mapsto (-\infty, \infty]$ and $\epsilon > 0$, we say that a vector g is an ϵ -subgradient of f at a point $x \in \text{dom}(f)$ if

 $f(z) \ge f(x) + (z - x)'g - \epsilon, \qquad \forall \ z \in \Re^n$



• The ϵ -subdifferential $\partial_{\epsilon} f(x)$ is the set of all ϵ subgradients of f at x. By convention, $\partial_{\epsilon} f(x) = \emptyset$ for $x \notin \operatorname{dom}(f)$.

• We have $\cap_{\epsilon \downarrow 0} \partial_{\epsilon} f(x) = \partial f(x)$ and

 $\partial_{\epsilon_1} f(x) \subset \partial_{\epsilon_2} f(x) \quad \text{if } 0 < \epsilon_1 < \epsilon_2$

CALCULATION OF AN ϵ -SUBGRADIENT

• Consider minimization of

$$f(x) = \sup_{z \in Z} \phi(x, z), \tag{1}$$

where $x \in \Re^n$, $z \in \Re^m$, Z is a subset of \Re^m , and $\phi : \Re^n \times \Re^m \mapsto (-\infty, \infty]$ is a function such that $\phi(\cdot, z)$ is convex and closed for each $z \in Z$.

• How to calculate ϵ -subgradient at $x \in \text{dom}(f)$?

• Let $z_x \in Z$ attain the supremum within $\epsilon \geq 0$ in Eq. (1), and let g_x be some subgradient of the convex function $\phi(\cdot, z_x)$.

• For all $y \in \Re^n$, using the subgradient inequality,

$$f(y) = \sup_{z \in Z} \phi(y, z) \ge \phi(y, z_x)$$
$$\ge \phi(x, z_x) + g'_x(y - x) \ge f(x) - \epsilon + g'_x(y - x)$$

i.e., g_x is an ϵ -subgradient of f at x, so

$$\phi(x, z_x) \ge \sup_{z \in Z} \phi(x, z) - \epsilon \text{ and } g_x \in \partial \phi(x, z_x)$$

$$\Rightarrow \qquad g_x \in \partial_\epsilon f(x)$$

ϵ -SUBGRADIENT METHOD

• Uses an ϵ -subgradient in place of a subgradient.

• **Problem:** Minimize convex $f : \Re^n \mapsto \Re$ over a closed convex set X.

• Method:

$$x_{k+1} = P_X(x_k - \alpha_k g_k)$$

where g_k is an ϵ_k -subgradient of f at x_k , α_k is a positive stepsize, and $P_X(\cdot)$ denotes projection on X.

• Can be viewed as subgradient method with "errors".

CONVERGENCE ANALYSIS

• **Basic inequality:** If $\{x_k\}$ is the ϵ -subgradient method sequence, for all $y \in X$ and $k \ge 0$

 $\|x_{k+1} - y\|^2 \le \|x_k - y\|^2 - 2\alpha_k (f(x_k) - f(y) - \epsilon_k) + \alpha_k^2 \|g_k\|^2$

• Replicate the entire convergence analysis for subgradient methods, but carry along the ϵ_k terms.

• Example: Constant $\alpha_k \equiv \alpha$, constant $\epsilon_k \equiv \epsilon$. Assume $||g_k|| \leq c$ for all k. For any optimal x^* ,

$$\|x_{k+1} - x^*\|^2 \le \|x_k - x^*\|^2 - 2\alpha (f(x_k) - f^* - \epsilon) + \alpha^2 c^2,$$

so the distance to x^* decreases if

$$0 < \alpha < \frac{2(f(x_k) - f^* - \epsilon)}{c^2}$$

or equivalently, if x_k is outside the level set

$$\left\{ x \mid f(x) \le f^* + \epsilon + \frac{\alpha c^2}{2} \right\}$$

• **Example:** If $\alpha_k \to 0$, $\sum_k \alpha_k \to \infty$, and $\epsilon_k \to \epsilon$, we get convergence to the ϵ -optimal set.

INCREMENTAL SUBGRADIENT METHODS

• Consider minimization of sum

$$f(x) = \sum_{i=1}^{m} f_i(x)$$

• Often arises in duality contexts with *m*: very large (e.g., separable problems).

• Incremental method moves x along a subgradient g_i of a component function f_i NOT the (expensive) subgradient of f, which is $\sum_i g_i$.

• View an iteration as a cycle of m subiterations, one for each component f_i .

• Let x_k be obtained after k cycles. To obtain x_{k+1} , do one more cycle: Start with $\psi_0 = x_k$, and set $x_{k+1} = \psi_m$, after the m steps

$$\psi_i = P_X(\psi_{i-1} - \alpha_k g_i), \qquad i = 1, \dots, m$$

with g_i being a subgradient of f_i at ψ_{i-1} .

• Motivation is faster convergence. A cycle can make much more progress than a subgradient iteration with essentially the same computation.

CONNECTION WITH ϵ -SUBGRADIENTS

• Neighborhood property: If x and \overline{x} are "near" each other, then subgradients at \overline{x} can be viewed as ϵ -subgradients at x, with ϵ "small."

• If $g \in \partial f(\overline{x})$, we have for all $z \in \Re^n$,

$$\begin{split} f(z) &\geq f(\overline{x}) + g'(z - \overline{x}) \\ &\geq f(x) + g'(z - x) + f(\overline{x}) - f(x) + g'(x - \overline{x}) \\ &\geq f(x) + g'(z - x) - \epsilon, \end{split}$$

where $\epsilon = |f(\overline{x}) - f(x)| + ||g|| \cdot ||\overline{x} - x||$. Thus, $g \in \partial_{\epsilon} f(x)$, with ϵ : small when \overline{x} is near x.

• The incremental subgradient iter. is an ϵ -subgradient iter. with $\epsilon = \epsilon_1 + \cdots + \epsilon_m$, where ϵ_i is the "error" in *i*th step in the cycle (ϵ_i : Proportional to α_k).

• Use

$$\partial_{\epsilon_1} f_1(x) + \dots + \partial_{\epsilon_m} f_m(x) \subset \partial_{\epsilon} f(x),$$

where $\epsilon = \epsilon_1 + \cdots + \epsilon_m$, to approximate the ϵ subdifferential of the sum $f = \sum_{i=1}^m f_i$.

• Convergence to optimal if $\alpha_k \to 0$, $\sum_k \alpha_k \to \infty$.

APPROXIMATION APPROACHES

• Approximation methods replace the original problem with an approximate problem.

• The approximation may be iteratively refined, for convergence to an exact optimum.

- A partial list of methods:
 - Cutting plane/outer approximation.
 - Simplicial decomposition/inner approximation.
 - Proximal methods (including Augmented Lagrangian methods for constrained minimization).
 - Interior point methods.
- A partial list of combination of methods:
 - Combined inner-outer approximation.
 - Bundle methods (proximal-cutting plane).
 - Combined proximal-subgradient (incremental option).

SUBGRADIENTS-OUTER APPROXIMATION

• Consider minimization of a convex function f: $\Re^n \mapsto \Re$, over a closed convex set X.

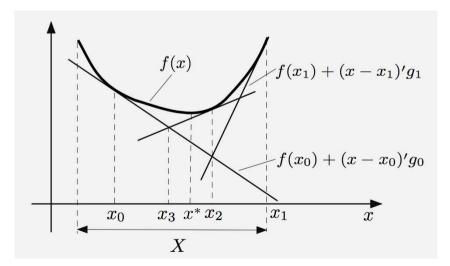
• We assume that at each $x \in X$, a subgradient g of f can be computed.

• We have

$$f(z) \ge f(x) + g'(z - x), \qquad \forall \ z \in \Re^n,$$

so each subgradient defines a plane (a linear function) that approximates f from below.

• The idea of the outer approximation/cutting plane approach is to build an ever more accurate approximation of f using such planes.



CUTTING PLANE METHOD

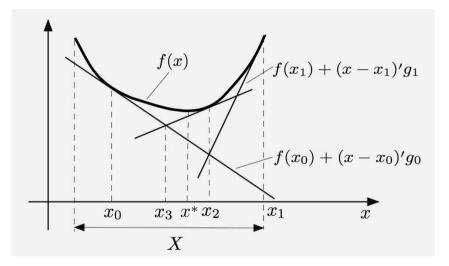
• Start with any $x_0 \in X$. For $k \ge 0$, set

$$x_{k+1} \in \arg\min_{x \in X} F_k(x),$$

where

 $F_k(x) = \max\{f(x_0) + (x - x_0)'g_0, \dots, f(x_k) + (x - x_k)'g_k\}$

and g_i is a subgradient of f at x_i .



• Note that $F_k(x) \leq f(x)$ for all x, and that $F_k(x_{k+1})$ increases monotonically with k. These imply that all limit points of x_k are optimal.

Proof: If $x_k \to \overline{x}$ then $F_k(x_k) \to f(\overline{x})$, [otherwise there would exist a hyperplane strictly separating $\operatorname{epi}(f)$ and $(\overline{x}, \lim_{k\to\infty} F_k(x_k))$]. This implies that $f(\overline{x}) \leq \lim_{k\to\infty} F_k(x) \leq f(x)$ for all x. Q.E.D.

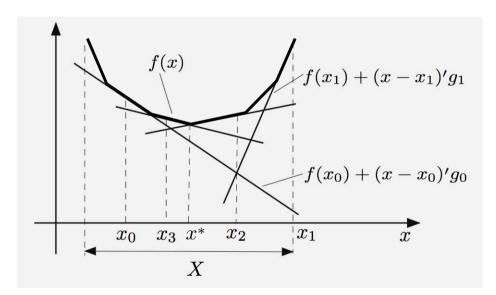
CONVERGENCE AND TERMINATION

• We have for all k

$$F_k(x_{k+1}) \le f^* \le \min_{i \le k} f(x_i)$$

• Termination when $\min_{i \leq k} f(x_i) - F_k(x_{k+1})$ comes to within some small tolerance.

• For f polyhedral, we have finite termination with an exactly optimal solution.



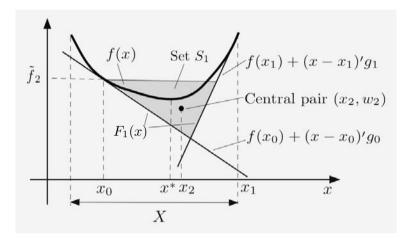
• Instability problem: The method can make large moves that deteriorate the value of f.

• Starting from the exact minimum it typically moves away from that minimum.

VARIANTS

• Variant I: Simultaneously with f, construct polyhedral approximations to X.

• Variant II: Central cutting plane methods



6.253 Convex Analysis and Optimization Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.