
LECTURE 17

LECTURE OUTLINE

• Review of cutting plane method

• Simplicial decomposition

• Duality between cutting plane and simplicial
decomposition

All figures are courtesy of Athena Scientific, and are used with permission.
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CUTTING PLANE METHOD

• Start with any x0 ⌘ X. For k ≥ 0, set

xk+1 ⌘ arg min Fk(x),
x⌦X

where

Fk(x) = max f(x
0

)+(x−x
0

)⇧g
0

, . . . , f(xk)+(x−xk)⇧gk

and gi is a

⇤

subgradient of f at xi.

⌅

x0 x1x2x3

f(x)

X

x

f(x0) + (x  x0)⇥g0

f(x1) + (x  x1)⇥g1

x∗

• We have Fk(x) ⌥ f(x) for all x, and Fk(xk+1)
increases monotonically with k.

• These imply that all limit points of xk are op-
timal.
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BASIC SIMPLICIAL DECOMPOSITION

• Minimize a differentiable convex f : �n → �
over bounded polyhedral constraint set X.

• Approximate X with a simpler inner approx-
imating polyhedral set.

• Construct a more refined problem by solving a
linear minimization over the original constraint.

◆
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• The method is appealing under two conditions:

− Minimizing f over the convex hull of a rela-
tive small number of extreme points is much
simpler than minimizing f over X.

− Minimizing a linear function over X is much
simpler than minimizing f over X.
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SIMPLICIAL DECOMPOSITION METHOD

Level sets of f
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• Given current iterate xk, and finite set Xk ⌦ X
(initially x0 ⌘ X, X0 = {x0}).
• Let x̃k+1 be extreme point of X that solves

minimize ∇f(xk)�(x− xk)

subject to x ⌘ X

and add x̃k+1 to Xk: Xk+1 = {x̃k+1} ∪Xk.

• Generate xk+1 as optimal solution of

minimize f(x)

subject to x conv(Xk+1).⌘
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CONVERGENCE

• There are two possibilities for x̃k+1:

(a) We have

0 ⌥ ∇f(xk)�(x̃k+1−xk) = min �
x⌦

∇f(xk) (x
X

−xk)

Then xk minimizes f over X (satisfies the
optimality condition)

(b) We have

0 > ∇f(xk)�(x̃k+1 − xk)

Then x̃k+1 ⌘/ conv(Xk), since xk minimizes
f over x ⌘ conv(Xk), so that

∇f(xk)�(x− xk) ≥ 0,  x ⌘ conv(Xk)

• Case (b) cannot occur an infinite number of
times (x̃k+1 ⌘/ Xk and X has finitely many ex-
treme points), so case (a) must eventually occur.

• The method will find a minimizer of f over X
in a finite number of iterations.
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COMMENTS ON SIMPLICIAL DECOMP.

• Important specialized applications

• Variant to enhance e⌅ciency. Discard some of
the extreme points that seem unlikely to “partici-
pate” in the optimal solution, i.e., all x̃ such that

∇f(xk+1)�(x̃− xk+1) > 0

• Variant to remove the boundedness assumption
on X (impose artificial constraints)

• Extension to X nonpolyhedral (method remains
unchanged, but convergence proof is more com-
plex)

• Extension to f nondifferentiable (requires use
of subgradients in place of gradients, and more
sophistication)

• Duality relation with cutting plane meth-
ods

• We will view cutting plane and simplicial de-
composition as special cases of two polyhedral ap-
proximation methods that are dual to each other
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OUTER LINEARIZATION OF FNS

f

• Outer linearization of closed proper convex func-
tion f : �n → (−⇣,⇣]

• Defined by set of “slopes” {y1, . . . , y⌫}, where
yj ⌘ ◆f(xj) for some xj

• Given by

F (x) = max
⇤
f(xj) + (x− xj)�y n

j
=1,...,⌫

⌅
, x

j
⌘ �

or equivalently

F (x) = max
⇤
y  

j
�x

j=1,...,⌫
− f (yj)

⌅

[this follows using x�jyj = f(xj)+ f (yj), which is
implied by yj ⌘ ◆f(xj) – the Conjugate Subgra-
dient Theorem]

◆
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INNER LINEARIZATION OF FNS

f

• Consider conjugate F  of outer linearization F

• After calculation using the formula

F (x) = max
⇤
yj
�x− f (yj)

j=1,...,⌫

F  is a piecewise linear approximation

⌅

of f de-
fined by “break points” at y1, . . . , y⌫

• We have

dom(F  ) = conv
�
{y1, . . . , y⌫}

with values at y1, . . . , y⌫ equal to the corresp

⇥
,

ond-
ing values of f 

• Epigraph of F  is the convex hull of the union of
the vertical halflines corresponding to y1, . . . , y⌫:

epi(F  ) = conv j=1,...,⌫ (yj , w) f (yj) w
⌥
∪

⇤
| ⌥

⌅�
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GENERALIZED SIMPLICIAL DECOMPOSITION

• Consider minimization of f(x) + c(x), over x ⌘
�n, where f and c are closed proper convex

• Case where f is differentiable

xk xxk+1

Slope: −⇥f(xk)

c(x)

Const.−f(x)

Ck+1(x)
Ck(x)

x̃k+1

• Given Ck: inner linearization of c, obtain

xk ⌘ arg min f
x⌦�n

⇤
(x) + Ck(x)

⌅

• Obtain x̃k+1 such that

−∇f(xk) ⌘ ◆c(x̃k+1),

and form Xk+1 = Xk ∪ {x̃k+1}
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NONDIFFERENTIABLE CASE

• Given Ck: inner linearization of c, obtain

xk ⌘ arg min f(x) + Ck(x)
x⌦�n

⇤ ⌅

• Obtain a subgradient gk ⌘ ◆f(xk) such that

−gk ⌘ ◆Ck(xk)

• Obtain x̃k+1 such that

−gk ⌘ ◆c(x̃k+1),

and form Xk+1 = Xk ∪ {x̃k+1}
• Example: c is the indicator function of a poly-
hedral set

gk

Level sets of f

x0

conv(Xk)

x
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gk  f(x̂k)

10



DUAL CUTTING PLANE IMPLEMENTATION

− gk Constant − f
1 ()

f
2 (−)

F
2,k(−)

Slope: x̃i, i ⇥ k
Slope: x̃i, i ⇥ k

Slope: x̃k+1

• Primal and dual Fenchel pair

min f1(x) + f2(x), min f (⌃) + f 
1 2 ( ⌃

x⌦�n ⌅⌦�n
− )

• Primal and dual approximations

min f  
1(x) + F f 

2,k(x) min 1 (⌃) + F2,k(−⌃)
x⌦�n ⌅⌦�n

• F2,k and F  
2,k are inner and outer approxima-

tions of f and f 
2 2

• x̃i+1 and gi are solutions of the primal or the
dual approximating problem (and corresponding
subgradients)
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