LECTURE 17

LECTURE OUTLINE

- Review of cutting plane method
- Simplicial decomposition
- Duality between cutting plane and simplicial decomposition

CUTTING PLANE METHOD

- Start with any $x_{0} \in X$. For $k \geq 0$, set

$$
x_{k+1} \in \arg \min _{x \in X} F_{k}(x)
$$

where
$F_{k}(x)=\max \left\{f\left(x_{0}\right)+\left(x-x_{0}\right)^{\prime} g_{0}, \ldots, f\left(x_{k}\right)+\left(x-x_{k}\right)^{\prime} g_{k}\right\}$
and g_{i} is a subgradient of f at x_{i}.

- We have $F_{k}(x) \leq f(x)$ for all x, and $F_{k}\left(x_{k+1}\right)$ increases monotonically with k.
- These imply that all limit points of x_{k} are optimal.

BASIC SIMPLICIAL DECOMPOSITION

- Minimize a differentiable convex $f: \Re^{n} \mapsto \Re$ over bounded polyhedral constraint set X.
- Approximate X with a simpler inner approximating polyhedral set.
- Construct a more refined problem by solving a linear minimization over the original constraint.

- The method is appealing under two conditions:
- Minimizing f over the convex hull of a relative small number of extreme points is much simpler than minimizing f over X.
- Minimizing a linear function over X is much simpler than minimizing f over X.

SIMPLICIAL DECOMPOSITION METHOD

- Given current iterate x_{k}, and finite set $X_{k} \subset X$ (initially $x_{0} \in X, X_{0}=\left\{x_{0}\right\}$).
- Let \tilde{x}_{k+1} be extreme point of X that solves

$$
\operatorname{minimize} \nabla f\left(x_{k}\right)^{\prime}\left(x-x_{k}\right)
$$

subject to $x \in X$
and add \tilde{x}_{k+1} to $X_{k}: X_{k+1}=\left\{\tilde{x}_{k+1}\right\} \cup X_{k}$.

- Generate x_{k+1} as optimal solution of
minimize $f(x)$
subject to $x \in \operatorname{conv}\left(X_{k+1}\right)$.

CONVERGENCE

- There are two possibilities for \tilde{x}_{k+1} :
(a) We have

$$
0 \leq \nabla f\left(x_{k}\right)^{\prime}\left(\tilde{x}_{k+1}-x_{k}\right)=\min _{x \in X} \nabla f\left(x_{k}\right)^{\prime}\left(x-x_{k}\right)
$$

Then x_{k} minimizes f over X (satisfies the optimality condition)
(b) We have

$$
0>\nabla f\left(x_{k}\right)^{\prime}\left(\tilde{x}_{k+1}-x_{k}\right)
$$

Then $\tilde{x}_{k+1} \notin \operatorname{conv}\left(X_{k}\right)$, since x_{k} minimizes f over $x \in \operatorname{conv}\left(X_{k}\right)$, so that

$$
\nabla f\left(x_{k}\right)^{\prime}\left(x-x_{k}\right) \geq 0, \quad \forall x \in \operatorname{conv}\left(X_{k}\right)
$$

- Case (b) cannot occur an infinite number of times $\left(\tilde{x}_{k+1} \notin X_{k}\right.$ and X has finitely many extreme points), so case (a) must eventually occur.
- The method will find a minimizer of f over X in a finite number of iterations.

COMMENTS ON SIMPLICIAL DECOMP.

- Important specialized applications
- Variant to enhance efficiency. Discard some of the extreme points that seem unlikely to "participate" in the optimal solution, i.e., all \tilde{x} such that

$$
\nabla f\left(x_{k+1}\right)^{\prime}\left(\tilde{x}-x_{k+1}\right)>0
$$

- Variant to remove the boundedness assumption on X (impose artificial constraints)
- Extension to X nonpolyhedral (method remains unchanged, but convergence proof is more complex)
- Extension to f nondifferentiable (requires use of subgradients in place of gradients, and more sophistication)

- Duality relation with cutting plane methods

- We will view cutting plane and simplicial decomposition as special cases of two polyhedral approximation methods that are dual to each other

OUTER LINEARIZATION OF FNS

Outer Linearization of f

Inner Linearization of Conjugate f^{\star}

- Outer linearization of closed proper convex function $f: \Re^{n} \mapsto(-\infty, \infty]$
- Defined by set of "slopes" $\left\{y_{1}, \ldots, y_{\ell}\right\}$, where $y_{j} \in \partial f\left(x_{j}\right)$ for some x_{j}
- Given by

$$
F(x)=\max _{j=1, \ldots, \ell}\left\{f\left(x_{j}\right)+\left(x-x_{j}\right)^{\prime} y_{j}\right\}, \quad x \in \Re^{n}
$$

or equivalently

$$
F(x)=\max _{j=1, \ldots, \ell}\left\{y_{j}^{\prime} x-f^{\star}\left(y_{j}\right)\right\}
$$

[this follows using $x_{j}^{\prime} y_{j}=f\left(x_{j}\right)+f^{\star}\left(y_{j}\right)$, which is implied by $y_{j} \in \partial f\left(x_{j}\right)$ - the Conjugate Subgradient Theorem]

INNER LINEARIZATION OF FNS

Outer Linearization of f

Inner Linearization of Conjugate f *

- Consider conjugate F^{*} of outer linearization F
- After calculation using the formula

$$
F(x)=\max _{j=1, \ldots, \ell}\left\{y_{j}^{\prime} x-f^{\star}\left(y_{j}\right)\right\}
$$

$F \star$ is a piecewise linear approximation of f^{\star} defined by "break points" at y_{1}, \ldots, y_{ℓ}

- We have

$$
\operatorname{dom}\left(F^{\star}\right)=\operatorname{conv}\left(\left\{y_{1}, \ldots, y_{\ell}\right\}\right),
$$

with values at y_{1}, \ldots, y_{ℓ} equal to the corresponding values of $f \star$

- Epigraph of F^{\star} is the convex hull of the union of the vertical halflines corresponding to y_{1}, \ldots, y_{ℓ} :

$$
\operatorname{epi}\left(F^{\star}\right)=\operatorname{conv}\left(\cup_{j=1, \ldots, \ell}\left\{\left(y_{j}, w\right) \mid f^{\star}\left(y_{j}\right) \leq w\right\}\right)
$$

GENERALIZED SIMPLICIAL DECOMPOSITION

- Consider minimization of $f(x)+c(x)$, over $x \in$ \Re^{n}, where f and c are closed proper convex
- Case where f is differentiable

- Given C_{k} : inner linearization of c, obtain

$$
x_{k} \in \arg \min _{x \in \Re^{n}}\left\{f(x)+C_{k}(x)\right\}
$$

- Obtain \tilde{x}_{k+1} such that

$$
-\nabla f\left(x_{k}\right) \in \partial c\left(\tilde{x}_{k+1}\right)
$$

and form $X_{k+1}=X_{k} \cup\left\{\tilde{x}_{k+1}\right\}$

NONDIFFERENTIABLE CASE

- Given C_{k} : inner linearization of c, obtain

$$
x_{k} \in \arg \min _{x \in \Re^{n}}\left\{f(x)+C_{k}(x)\right\}
$$

- Obtain a subgradient $g_{k} \in \partial f\left(x_{k}\right)$ such that

$$
-g_{k} \in \partial C_{k}\left(x_{k}\right)
$$

- Obtain \tilde{x}_{k+1} such that

$$
-g_{k} \in \partial c\left(\tilde{x}_{k+1}\right),
$$

and form $X_{k+1}=X_{k} \cup\left\{\tilde{x}_{k+1}\right\}$

- Example: c is the indicator function of a polyhedral set

DUAL CUTTING PLANE IMPLEMENTATION

- Primal and dual Fenchel pair

$$
\min _{x \in \Re^{n}} f_{1}(x)+f_{2}(x), \quad \min _{\lambda \in \Re^{n}} f_{1}^{\star}(\lambda)+f_{2}^{\star}(-\lambda)
$$

- Primal and dual approximations

$$
\min _{x \in \Re^{n}} f_{1}(x)+F_{2, k}(x) \quad \min _{\lambda \in \Re^{n}} f_{1}^{\star}(\lambda)+F_{2, k}^{\star}(-\lambda)
$$

- $F_{2, k}$ and $F_{2, k}^{\star}$ are inner and outer approximations of f_{2} and f_{2}^{\star}
- \tilde{x}_{i+1} and g_{i} are solutions of the primal or the dual approximating problem (and corresponding subgradients)

MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

