LECTURE 19

LECTURE OUTLINE

- Proximal minimization algorithm
- Extensions

Consider minimization of closed proper convex f: $\Re^n \mapsto (-\infty, +\infty]$ using a different type of approximation:

- Regularization in place of linearization
- Add a quadratic term to f to make it strictly convex and "well-behaved"

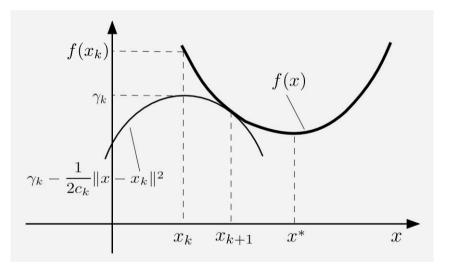
• Refine the approximation at each iteration by changing the quadratic term

PROXIMAL MINIMIZATION ALGORITHM

• A general algorithm for convex fn minimization

$$x_{k+1} \in \arg\min_{x \in \Re^n} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

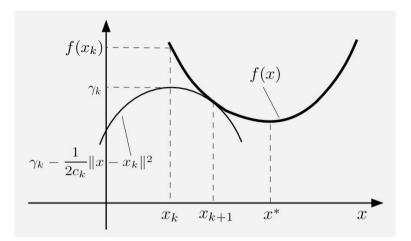
- $f: \Re^n \mapsto (-\infty, \infty]$ is closed proper convex
- $-c_k$ is a positive scalar parameter
- $-x_0$ is arbitrary starting point



- x_{k+1} exists because of the quadratic.
- Note it does not have the instability problem of cutting plane method
- If x_k is optimal, $x_{k+1} = x_k$.

• If $\sum_k c_k = \infty$, $f(x_k) \to f^*$ and $\{x_k\}$ converges to some optimal solution if one exists.

CONVERGENCE



• Some basic properties: For all k

$$(x_k - x_{k+1})/c_k \in \partial f(x_{k+1})$$

so x_k to x_{k+1} move is "nearly" a subgradient step.

• For all k and $y \in \Re^n$

$$||x_{k+1} - y||^2 \le ||x_k - y||^2 - 2c_k (f(x_{k+1}) - f(y)) - ||x_k - x_{k+1}||^2$$

Distance to the optimum is improved.

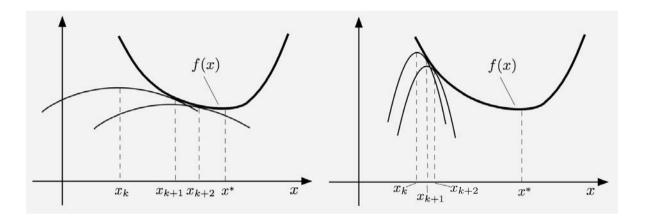
• Convergence mechanism:

$$f(x_{k+1}) + \frac{1}{2c_k} \|x_{k+1} - x_k\|^2 < f(x_k).$$

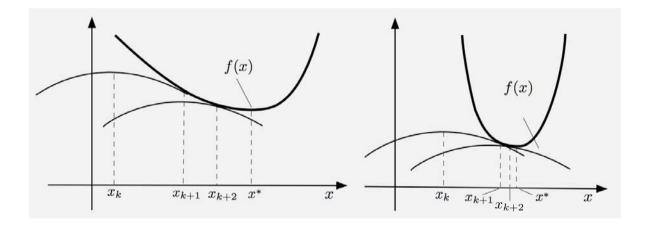
Cost improves by at least $\frac{1}{2c_k} ||x_{k+1} - x_k||^2$, and this is sufficient to guarantee convergence.

RATE OF CONVERGENCE I

• Role of penalty parameter c_k :



• Role of growth properties of f near optimal solution set:



RATE OF CONVERGENCE II

• Assume that for some scalars $\beta > 0$, $\delta > 0$, and $\alpha \ge 1$,

 $f^* + \beta (d(x))^{\alpha} \le f(x), \quad \forall \ x \in \Re^n \text{ with } d(x) \le \delta$

where

$$d(x) = \min_{x^* \in X^*} \|x - x^*\|$$

i.e., growth of order α from optimal solution set X^* .

• If
$$\alpha = 2$$
 and $\lim_{k \to \infty} c_k = \overline{c}$, then

$$\limsup_{k \to \infty} \frac{d(x_{k+1})}{d(x_k)} \le \frac{1}{1 + \beta \overline{c}}$$

linear convergence.

• If $1 < \alpha < 2$, then

$$\limsup_{k \to \infty} \frac{d(x_{k+1})}{\left(d(x_k)\right)^{1/(\alpha-1)}} < \infty$$

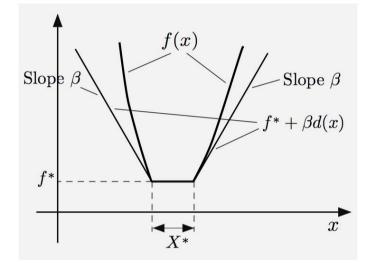
superlinear convergence.

FINITE CONVERGENCE

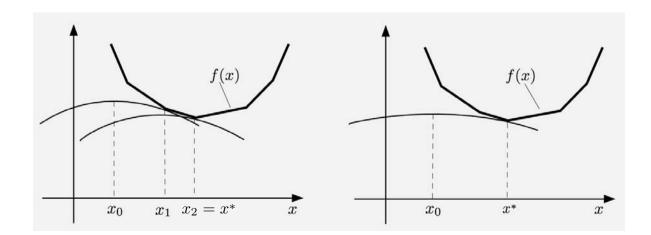
• Assume growth order $\alpha = 1$:

 $f^* + \beta d(x) \le f(x), \qquad \forall \ x \in \Re^n,$

e.g., f is polyhedral.



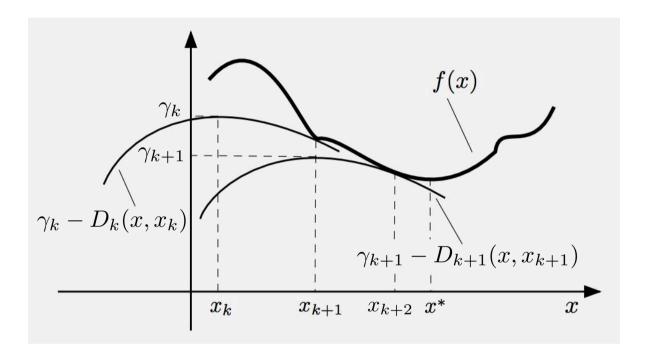
• Method converges finitely (in a single step for c_0 sufficiently large).



IMPORTANT EXTENSIONS

• Replace quadratic regularization by more general proximal term.

• Allow nonconvex f.



• Combine with linearization of f (we will focus on this first).

6.253 Convex Analysis and Optimization Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.