LECTURE 20

LECTURE OUTLINE

- Proximal methods
- Review of Proximal Minimization
- Proximal cutting plane algorithm
- Bundle methods
- Augmented Lagrangian Methods
- Dual Proximal Minimization Algorithm

• Method relationships to be established:

All figures are courtesy of Athena Scientific, and are used with permission.

RECALL PROXIMAL MINIMIZATION

• Minimizes closed convex proper f:

$$x_{k+1} = \arg\min_{x \in \Re^n} \left\{ f(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

where x_0 is an arbitrary starting point, and $\{c_k\}$ is a positive parameter sequence.

• We have $f(x_k) \to f^*$. Also $x_k \to$ some minimizer of f, provided one exists.

• Finite convergence for polyhedral f.

• Each iteration can be viewed in terms of Fenchel duality.

PROXIMAL/BUNDLE METHODS

• Replace f with a cutting plane approx. and/or change quadratic regularization more conservatively.

• A general form:

$$x_{k+1} \in \arg\min_{x \in X} \{F_k(x) + p_k(x)\}$$

 $F_k(x) = \max\left\{f(x_0) + (x - x_0)'g_0, \dots, f(x_k) + (x - x_k)'g_k\right\}$ $p_k(x) = \frac{1}{2c_k} \|x - y_k\|^2$

where c_k is a positive scalar parameter.

• We refer to $p_k(x)$ as the proximal term, and to its center y_k as the proximal center.

Change y_k in different ways => different methods.

PROXIMAL CUTTING PLANE METHODS

• Keeps moving the proximal center at each iteration $(y_k = x_k)$

• Same as proximal minimization algorithm, but f is replaced by a cutting plane approximation F_k :

$$x_{k+1} \in \arg\min_{x \in X} \left\{ F_k(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

where

$$F_k(x) = \max\{f(x_0) + (x - x_0)'g_0, \dots, f(x_k) + (x - x_k)'g_k\}$$

• Drawbacks:

- (a) **Stability issue:** For large enough c_k and polyhedral X, x_{k+1} is the exact minimum of F_k over X in a single minimization, so it is identical to the ordinary cutting plane method. For small c_k convergence is slow.
- (b) The number of subgradients used in F_k may become very large; the quadratic program may become very time-consuming.

• These drawbacks motivate algorithmic variants, called *bundle methods*.

BUNDLE METHODS

• Allow a proximal center $y_k \neq x_k$: $x_{k+1} \in \arg\min_{x \in X} \left\{ F_k(x) + p_k(x) \right\}$ $F_k(x) = \max \left\{ f(x_0) + (x - x_0)'g_0, \dots, f(x_k) + (x - x_k)'g_k \right\}$

$$p_k(x) = \frac{1}{2c_k} ||x - y_k||^2$$

• Null/Serious test for changing y_k : For some fixed $\beta \in (0, 1)$

$$y_{k+1} = \begin{cases} x_{k+1} & \text{if } f(y_k) - f(x_{k+1}) \ge \beta \delta_k, \\ y_k & \text{if } f(y_k) - f(x_{k+1}) < \beta \delta_k, \end{cases}$$
$$\delta_k = f(y_k) - \left(F_k(x_{k+1}) + p_k(x_{k+1}) \right) > 0$$

REVIEW OF FENCHEL DUALITY

• Consider the problem

minimize $f_1(x) + f_2(x)$ subject to $x \in \Re^n$,

where f_1 and f_2 are closed proper convex.

• Duality Theorem:

- (a) If f^* is finite and $\operatorname{ri}(\operatorname{dom}(f_1)) \cap \operatorname{ri}(\operatorname{dom}(f_2)) \neq \emptyset$, then strong duality holds and there exists at least one dual optimal solution.
- (b) Strong duality holds, and (x^*, λ^*) is a primal and dual optimal solution pair if and only if

$$x^* \in \arg\min_{x \in \Re^n} \left\{ f_1(x) - x'\lambda^* \right\}, \ x^* \in \arg\min_{x \in \Re^n} \left\{ f_2(x) + x'\lambda^* \right\}$$

• By Fenchel inequality, the last condition is equivalent to

$$\lambda^* \in \partial f_1(x^*)$$
 [or equivalently $x^* \in \partial f_1^*(\lambda^*)$]

and

 $-\lambda^* \in \partial f_2(x^*)$ [or equivalently $x^* \in \partial f_2^*(-\lambda^*)$]

GEOMETRIC INTERPRETATION

• When f_1 and/or f_2 are differentiable, the optimality condition is equivalent to

$$\lambda^* = \nabla f_1(x^*)$$
 and/or $\lambda^* = -\nabla f_2(x^*)$

DUAL PROXIMAL MINIMIZATION

• The proximal iteration can be written in the Fenchel form: $\min_x \{f_1(x) + f_2(x)\}$ with

$$f_1(x) = f(x), \qquad f_2(x) = \frac{1}{2c_k} ||x - x_k||^2$$

• The Fenchel dual is

minimize $f_1^{\star}(\lambda) + f_2^{\star}(-\lambda)$ subject to $\lambda \in \Re^n$

• We have $f_2^{\star}(-\lambda) = -x'_k \lambda + \frac{c_k}{2} \|\lambda\|^2$, so the dual problem is

minimize $f^{\star}(\lambda) - x'_k \lambda + \frac{c_k}{2} \|\lambda\|^2$ subject to $\lambda \in \Re^n$

where f^* is the conjugate of f.

• f_2 is real-valued, so no duality gap.

• Both primal and dual problems have a unique solution, since they involve a closed, strictly convex, and coercive cost function.

DUAL PROXIMAL ALGORITHM

• Can solve the Fenchel-dual problem instead of the primal at each iteration:

$$\lambda_{k+1} = \arg\min_{\lambda \in \Re^n} \left\{ f^*(\lambda) - x'_k \lambda + \frac{c_k}{2} \|\lambda\|^2 \right\}$$
(1)

• Lagragian optimality conditions:

$$x_{k+1} \in \arg \max_{x \in \Re^n} \left\{ x' \lambda_{k+1} - f(x) \right\}$$

$$x_{k+1} = \arg\min_{x \in \Re^n} \left\{ x' \lambda_{k+1} + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

or equivalently,

$$\lambda_{k+1} \in \partial f(x_{k+1}), \qquad \lambda_{k+1} = \frac{x_k - x_{k+1}}{c_k}$$

• **Dual algorithm:** At iteration k, obtain λ_{k+1} from the dual proximal minimization (1) and set

$$x_{k+1} = x_k - c_k \lambda_{k+1}$$

• As x_k converges to a primal optimal solution x^* , the dual sequence λ_k converges to 0 (a subgradient of f at x^*).

VISUALIZATION

• The primal and dual implementations are mathematically equivalent and generate identical sequences $\{x_k\}$.

• Which one is preferable depends on whether f or its conjugate f^* has more convenient structure.

• Special case: When -f is the dual function of the constrained minimization $\min_{g(x) \leq 0} F(x)$, the dual algorithm is equivalent to an important general purpose algorithm: the Augmented Lagrangian method.

• This method aims to find a subgradient of the primal function $p(u) = \min_{g(x) \le u} F(x)$ at u = 0 (i.e., a dual optimal solution).

AUGMENTED LAGRANGIAN METHOD

• Consider the convex constrained problem

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in X, \quad Ex = d \end{array}$

• Primal and dual functions:

$$p(u) = \inf_{\substack{x \in X \\ Ex - d = u}} f(x), \quad q(\mu) = \inf_{x \in X} \left\{ f(x) + \mu'(Ex - d) \right\}$$

- Assume p: closed, so (q, p) are "conjugate" pair.
- Proximal algorithms for maximizing q:

$$\mu_{k+1} = \arg \max_{\mu \in \Re^m} \left\{ q(\mu) - \frac{1}{2c_k} \|\mu - \mu_k\|^2 \right\}$$
$$u_{k+1} = \arg \min_{u \in \Re^m} \left\{ p(u) + \mu'_k u + \frac{c_k}{2} \|u\|^2 \right\}$$

Dual update: $\mu_{k+1} = \mu_k + c_k u_{k+1}$

• Implementation:

 $u_{k+1} = Ex_{k+1} - d,$ $x_{k+1} \in \arg\min_{x \in X} L_{c_k}(x, \mu_k)$

where L_c is the Augmented Lagrangian function

$$L_c(x,\mu) = f(x) + \mu'(Ex - d) + \frac{c}{2} ||Ex - d||^2$$

GRADIENT INTERPRETATION

• Back to the dual proximal algorithm and the dual update $\lambda_{k+1} = \frac{x_k - x_{k+1}}{c_k}$

• **Proposition:** λ_{k+1} can be viewed as a gradient:

$$\lambda_{k+1} = \frac{x_k - x_{k+1}}{c_k} = \nabla \phi_{c_k}(x_k),$$

where

$$\phi_c(z) = \inf_{x \in \Re^n} \left\{ f(x) + \frac{1}{2c} \|x - z\|^2 \right\}$$

• So the dual update $x_{k+1} = x_k - c_k \lambda_{k+1}$ can be viewed as a gradient iteration for minimizing $\phi_c(z)$ (which has the same minima as f).

• The gradient is calculated by the dual proximal minimization. Possibilities for faster methods (e.g., Newton, Quasi-Newton). Useful in augmented Lagrangian methods.

PROXIMAL LINEAR APPROXIMATION

• Convex problem: Min $f : \Re^n \mapsto \Re$ over X.

• Proximal outer linearization method: Same as proximal minimization algorithm, but f is replaced by a cutting plane approximation F_k :

$$x_{k+1} \in \arg\min_{x \in \Re^n} \left\{ F_k(x) + \frac{1}{2c_k} \|x - x_k\|^2 \right\}$$

$$\lambda_{k+1} = \frac{x_k - x_{k+1}}{c_k}$$

where $g_i \in \partial f(x_i)$ for $i \leq k$ and

$$F_k(x) = \max\{f(x_0) + (x - x_0)'g_0, \dots, f(x_k) + (x - x_k)'g_k\} + \delta_X(x)$$

• Proximal Inner Linearization Method (Dual proximal implementation): Let F_k^* be the conjugate of F_k . Set

$$\lambda_{k+1} \in \arg\min_{\lambda \in \Re^n} \left\{ F_k^{\star}(\lambda) - x_k^{\prime}\lambda + \frac{c_k}{2} \|\lambda\|^2 \right\}$$
$$x_{k+1} = x_k - c_k \lambda_{k+1}$$

Obtain $g_{k+1} \in \partial f(x_{k+1})$, either directly or via

$$g_{k+1} \in \arg \max_{\lambda \in \Re^n} \left\{ x'_{k+1}\lambda - f^*(\lambda) \right\}$$

• Add g_{k+1} to the outer linearization, or x_{k+1} to the inner linearization, and continue.

PROXIMAL INNER LINEARIZATION

• It is a mathematical equivalent dual to the outer linearization method.

• Here we use the conjugacy relation between outer and inner linearization.

• Versions of these methods where the proximal center is changed only after some "algorithmic progress" is made:

- The outer linearization version is the (standard) bundle method.
- The inner linearization version is an **inner approximation version of a bundle method**.

6.253 Convex Analysis and Optimization Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.