LECTURE 21

LECTURE OUTLINE

• Generalized forms of the proximal point algorithm

- Interior point methods
- Constrained optimization case Barrier method
- Conic programming cases

All figures are courtesy of Athena Scientific, and are used with permission.

GENERALIZED PROXIMAL ALGORITHM

- Replace quadratic regularization by more general proximal term.
- Minimize possibly nonconvex $f :\mapsto (-\infty, \infty]$.

• Introduce a general regularization term D_k : $\Re^{2n} \mapsto (-\infty, \infty]$:

$$x_{k+1} \in \arg\min_{x \in \Re^n} \left\{ f(x) + D_k(x, x_k) \right\}$$

• Assume attainment of min (but this is not automatically guaranteed)

• Complex/unreliable behavior when f is nonconvex

SOME GUARANTEES ON GOOD BEHAVIOR

• Assume

$$D_k(x, x_k) \ge D_k(x_k, x_k), \qquad \forall \ x \in \Re^n, \ k \qquad (1)$$

Then we have a cost improvement property:

$$f(x_{k+1}) \le f(x_{k+1}) + D_k(x_{k+1}, x_k) - D_k(x_k, x_k)$$

$$\le f(x_k) + D_k(x_k, x_k) - D_k(x_k, x_k)$$

$$= f(x_k)$$

• Assume algorithm stops only when x_k in optimal solution set X^* , i.e.,

$$x_k \in \arg\min_{x \in \Re^n} \left\{ f(x) + D_k(x, x_k) \right\} \quad \Rightarrow \quad x_k \in X^*$$

- Then strict cost improvement for $x_k \notin X^*$
- Guaranteed if f is convex and
 - (a) $D_k(\cdot, x_k)$ satisfies (1), and is convex and differentiable at x_k
 - (b) We have

$$\operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}(\operatorname{dom}(D_k(\cdot, x_k))) \neq \emptyset$$

EXAMPLE METHODS

• Bregman distance function

$$D_k(x,y) = \frac{1}{c_k} \left(\phi(x) - \phi(y) - \nabla \phi(y)'(x-y) \right),$$

where $\phi : \Re^n \mapsto (-\infty, \infty]$ is a convex function, differentiable within an open set containing dom(f), and c_k is a positive penalty parameter.

• Majorization-Minimization algorithm:

$$D_k(x,y) = M_k(x,y) - M_k(y,y),$$

where M satisfies

$$M_k(y, y) = f(y), \qquad \forall \ y \in \Re^n, \ k = 0, 1,$$
$$M_k(x, x_k) \ge f(x_k), \qquad \forall \ x \in \Re^n, \ k = 0, 1, \dots$$

• Example for case $f(x) = R(x) + ||Ax - b||^2$, where *R* is a convex regularization function

$$M(x,y) = R(x) + ||Ax - b||^{2} - ||Ax - Ay||^{2} + ||x - y||^{2}$$

• Expectation-Maximization (EM) algorithm (special context in inference, f nonconvex)

INTERIOR POINT METHODS

• Consider min f(x) s. t. $g_j(x) \le 0, j = 1, \dots, r$

• A barrier function, that is continuous and goes to ∞ as any one of the constraints $g_j(x)$ approaches 0 from negative values; e.g.,

$$B(x) = -\sum_{j=1}^{r} \ln\{-g_j(x)\}, \quad B(x) = -\sum_{j=1}^{r} \frac{1}{g_j(x)}.$$

• Barrier method: Let

$$x_k = \arg\min_{x \in S} \left\{ f(x) + \epsilon_k B(x) \right\}, \qquad k = 0, 1, \dots,$$

where $S = \{x \mid g_j(x) < 0, j = 1, ..., r\}$ and the parameter sequence $\{\epsilon_k\}$ satisfies $0 < \epsilon_{k+1} < \epsilon_k$ for all k and $\epsilon_k \to 0$.

BARRIER METHOD - EXAMPLE

minimize $f(x) = \frac{1}{2} \left((x^1)^2 + (x^2)^2 \right)$ subject to $2 \le x^1$,

with optimal solution $x^* = (2, 0)$.

- Logarithmic barrier: $B(x) = -\ln(x^1 2)$
- We have $x_k = (1 + \sqrt{1 + \epsilon_k}, 0)$ from $x_k \in \arg\min_{x^1 > 2} \left\{ \frac{1}{2} \left((x^1)^2 + (x^2)^2 \right) - \epsilon_k \ln(x^1 - 2) \right\}$

• As ϵ_k is decreased, the unconstrained minimum x_k approaches the constrained minimum $x^* = (2, 0)$.

• As $\epsilon_k \to 0$, computing x_k becomes more difficult because of ill-conditioning (a Newton-like method is essential for solving the approximate problems).

CONVERGENCE

• Every limit point of a sequence $\{x_k\}$ generated by a barrier method is a minimum of the original constrained problem.

Proof: Let $\{\overline{x}\}$ be the limit of a subsequence $\{x_k\}_{k \in K}$. Since $x_k \in S$ and X is closed, \overline{x} is feasible for the original problem.

If \overline{x} is not a minimum, there exists a feasible x^* such that $f(x^*) < f(\overline{x})$ and therefore also an interior point $\tilde{x} \in S$ such that $f(\tilde{x}) < f(\overline{x})$. By the definition of x_k ,

$$f(x_k) + \epsilon_k B(x_k) \le f(\tilde{x}) + \epsilon_k B(\tilde{x}), \quad \forall k,$$

so by taking limit

$$f(\overline{x}) + \liminf_{k \to \infty, \ k \in K} \epsilon_k B(x_k) \le f(\tilde{x}) < f(\overline{x})$$

Hence $\liminf_{k \to \infty, k \in K} \epsilon_k B(x_k) < 0.$

If $\overline{x} \in S$, we have $\lim_{k\to\infty, k\in K} \epsilon_k B(x_k) = 0$, while if \overline{x} lies on the boundary of S, we have by assumption $\lim_{k\to\infty, k\in K} B(x_k) = \infty$. Thus

$$\liminf_{k \to \infty} \epsilon_k B(x_k) \ge 0,$$

– a contradiction.

SECOND ORDER CONE PROGRAMMING

• Consider the SOCP

minimize c'xsubject to $A_ix - b_i \in C_i, i = 1, ..., m$,

where $x \in \Re^n$, c is a vector in \Re^n , and for $i = 1, \ldots, m$, A_i is an $n_i \times n$ matrix, b_i is a vector in \Re^{n_i} , and C_i is the second order cone of \Re^{n_i} .

• We approximate this problem with

minimize
$$c'x + \epsilon_k \sum_{i=1}^m B_i(A_ix - b_i)$$

subject to $x \in \Re^n$, $A_i x - b_i \in int(C_i), i = 1, ..., m$,

where B_i is the logarithmic barrier function:

$$B_i(y) = -\ln\left(y_{n_i}^2 - (y_1^2 + \dots + y_{n_i-1}^2)\right), \quad y \in \operatorname{int}(C_i),$$

and $\{\epsilon_k\}$ is a positive sequence with $\epsilon_k \to 0$.

- Essential to use Newton's method to solve the approximating problems.
- Interesting complexity analysis

SEMIDEFINITE PROGRAMMING

• Consider the dual SDP

maximize $b'\lambda$ subject to $D - (\lambda_1 A_1 + \dots + \lambda_m A_m) \in C$,

where $b \in \Re^m$, D, A_1, \ldots, A_m are symmetric matrices, and C is the cone of positive semidefinite matrices.

• The logarithmic barrier method uses approximating problems of the form

maximize $b'\lambda + \epsilon_k \ln \left(\det(D - \lambda_1 A_1 - \dots - \lambda_m A_m) \right)$

over all $\lambda \in \Re^m$ such that $D - (\lambda_1 A_1 + \dots + \lambda_m A_m)$ is positive definite.

• Here $\epsilon_k > 0$ and $\epsilon_k \to 0$.

• Furthermore, we should use a starting point such that $D - \lambda_1 A_1 - \cdots - \lambda_m A_m$ is positive definite, and Newton's method should ensure that the iterates keep $D - \lambda_1 A_1 - \cdots - \lambda_m A_m$ within the positive definite cone. 6.253 Convex Analysis and Optimization Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.