
LECTURE 21

LECTURE OUTLINE

• Generalized forms of the proximal point algo-
rithm

• Interior point methods

• Constrained optimization case - Barrier method

• Conic programming cases

All figures are courtesy of Athena Scientific, and are used with permission.
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GENERALIZED PROXIMAL ALGORITHM

• Replace quadratic regularization by more gen-
eral proximal term.

• Minimize possibly nonconvex f :⌘⌦ (−∞,∞].

f(x)

xxk+1xk xxk+2

k  Dk(x, xk)

k+1  Dk+1(x, xk+1)

k

k+1

• Introduce a general regularization term Dk :
◆2n ⌘⌦ (−∞,∞]:

xk+1

✏ arg min f(x) + Dk(x, xk)
x⌥ n

⇤ ⌅

• Assume attainment of min (but this is not au-
tomatically guaranteed)

• Complex/unreliable behavior when f is noncon-
vex
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SOME GUARANTEES ON GOOD BEHAVIOR

• Assume

Dk(x, xk) ⌥ Dk(xk, xk), ✓ x ✏ ◆n, k (1)

Then we have a cost improvement property:

f(xk+1

) ⌃ f(xk+1

) + Dk(xk+1

, xk)−Dk(xk, xk)

⌃ f(xk) + Dk(xk, xk)−Dk(xk, xk)

= f(xk)

• Assume algorithm stops only when xk in optimal
solution set X⇥, i.e.,

xk ✏ arg min f(x) + Dk(x, xk) xk X⇥
x⌥ n

⇤
} ⇒ ✏

• Then strict cost improvement for xk ✏/ X⇥

• Guaranteed if f is convex and

(a) Dk(·, xk) satisfies (1), and is convex and dif-
ferentiable at xk

(b) We have

ri dom(f)  ri dom(Dk(·, xk)) = Ø
� ⇥ � ⇥

⇣
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EXAMPLE METHODS

• Bregman distance function

1
Dk(x, y) =

�
 (x)−  (y)−⇢ (y)⇧(x

ck
− y)

⇥
,

where  : ◆n ⌘⌦ (−∞,∞] is a convex function, dif-
ferentiable within an open set containing dom(f),
and ck is a positive penalty parameter.

• Majorization-Minimization algorithm:

Dk(x, y) = Mk(x, y)−Mk(y, y),

where M satisfies

Mk(y, y) = f(y), ✓ y ✏ ◆n, k = 0, 1,

Mk(x, xk) ⌥ f(xk), ✓ x ✏ ◆n, k = 0, 1, . . .

• Example for case f(x) = R(x)+⇠Ax−b⇠2, where
R is a convex regularization function

M(x, y) = R(x) + ⇠Ax− b⇠2−⇠Ax−Ay⇠2 + ⇠x− y⇠2

• Expectation-Maximization (EM) algorithm (spe-
cial context in inference, f nonconvex)
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INTERIOR POINT METHODS

• Consider min f(x) s. t. gj(x) ⌃ 0, j = 1, . . . , r

• A barrier function, that is continuous and
goes to ∞ as any one of the constraints gj(x) ap-
proaches 0 from negative values; e.g.,

r

B(x) = −

Barrier

⌧
ln

j=1

⇤
−gj(x)

⌅
, B(x) = −

method: Let

⌧r
1

.
gj(x)

j=1

•

xk = arg min f(x) + ⇧kB(x) , k = 0, 1, . . . ,
x⌥S

where S =

⇤ ⌅

{x | gj(x) < 0, j = 1, . . . , r} and the
parameter sequence {⇧k} satisfies 0 < ⇧k+1

< ⇧k for
all k and ⇧k 0.⌦

!

"#$%&'()*#+*! "#$%&'()*#+*!
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BARRIER METHOD - EXAMPLE
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minimize f(x) = 1
2 (x1)2 + (x2)2

subject to 2 ⌃ x1,

with optimal solution x⇥ = (2, 0).

• Logarithmic barrier: 1

• We have xk =

xk ✏ arg min 1
21x >2

�
B(x) = − ln (x − 2)

1 +
⇡

1 + ⇧k , 0 from
⇤ �

(x1)2 + (x2)2

⇥
⇥
− ⇧k ln (x1 − 2)

• As ⇧k is decreased, the unconstrained minim

⌅

um
xk approaches the constrained minimum x⇥ = (2, 0).

• As ⇧k ⌦ 0, computing xk becomes more di⌅cult
because of ill-conditioning (a Newton-like method
is essential for solving the approximate problems).

� ⇥
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CONVERGENCE

• Every limit point of a sequence {xk} generated
by a barrier method is a minimum of the original
constrained problem.

Proof: Let {x} be the limit of a subsequence {xk}k⌥K .
Since xk ✏ S and X is closed, x is feasible for the
original problem.

If x is not a minimum, there exists a feasible
x⇥ such that f(x⇥) < f(x) and therefore also an
interior point x̃ ✏ S such that f(x̃) < f(x). By the
definition of xk,

f(xk) + ⇧kB(xk) ⌃ f(x̃) + ⇧kB(x̃), ✓ k,

so by taking limit

f(x) + lim inf ⇧kB(xk)
k⌅⌃, k⌥K

⌃ f(x̃) < f(x)

Hence lim infk⌅⌃, k ⇧ B(x ) < 0.⌥K k k

If x ✏ S, we have limk⌅⌃, k⌥K ⇧kB(xk) = 0,
while if x lies on the boundary of S, we have by
assumption limk⌅⌃, k⌥K B(xk) =∞. Thus

lim inf ⇧kB(xk)
k⌅⌃

⌥ 0,

– a contradiction.
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SECOND ORDER CONE PROGRAMMING

• Consider the SOCP

minimize c⇧x

subject to Aix− bi ✏ Ci, i = 1, . . . , m,

where x ✏ ◆n, c is a vector in ◆n, and for i =
1, . . . , m, Ai is an ni ⇤ n matrix, bi is a vector in
◆ni , and Ci is the second order cone of ◆ni .

• We approximate this problem with

m

minimize c⇧x + ⇧k
⌧

Bi(Aix− bi)

i=1

subject to x ✏ ◆n, Aix− bi ✏ int(Ci), i = 1, . . . , m,

where Bi is the logarithmic barrier function:

Bi(y) = − ln
�
y2

ni
− (y2

1

+ · · ·+ y2

ni−1

) , y ✏ int(Ci),

and {⇧k} is a positive sequence with

⇥

⇧k ⌦ 0.

• Essential to use Newton’s method to solve the
approximating problems.

• Interesting complexity analysis
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SEMIDEFINITE PROGRAMMING

• Consider the dual SDP

maximize b⇧⌥

subject to D − (⌥
1

A
1

+ · · · + ⌥mAm) ✏ C,

where b ✏ ◆m, D, A
1

, . . . , Am are symmetric ma-
trices, and C is the cone of positive semidefinite
matrices.

• The logarithmic barrier method uses approxi-
mating problems of the form

maximize b⇧⌥+⇧k ln det(D−⌥
1

A
1

− · · ·−⌥mAm)

over all ⌥ m

� ⇥

✏ ◆ such that D− (⌥
1

A
1

+ · · ·+⌥mAm)
is positive definite.

• Here ⇧k > 0 and ⇧k ⌦ 0.

• Furthermore, we should use a starting point
such that D − ⌥

1

A
1

− · · · − ⌥mAm is positive def-
inite, and Newton’s method should ensure that
the iterates keep D−⌥

1

A
1

− · · ·−⌥mAm within the
positive definite cone.
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