
LECTURE 25: REVIEW/EPILOGUE

LECTURE OUTLINE

CONVEX ANALYSIS AND DUALITY

• Basic concepts of convex analysis

• Basic concepts of convex optimization

• Geometric duality framework - MC/MC

• Constrained optimization duality

• Subgradients - Optimality conditions

*******************************************

CONVEX OPTIMIZATION ALGORITHMS

• Special problem classes

• Subgradient methods

• Polyhedral approximation methods

• Proximal methods

• Dual proximal methods - Augmented Lagrangeans

• Interior point methods

• Incremental methods

• Optimal complexity methods

• Various combinations around proximal idea and
generalizations

All figures are courtesy of Athena Scientific, and are used with permission.
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BASIC CONCEPTS OF CONVEX ANALYSIS

Epigraphs, level sets, closedness, semicontinuity•
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• Finite representations of generated cones and
convex hulls - Caratheodory’s Theorem.

• Relative interior:
− Nonemptiness for a convex set
− Line segment principle
− Calculus of relative interiors

• Continuity of convex functions

• Nonemptiness of intersections of nested sequences
of closed sets.

• Closure operations and their calculus.

• Recession cones and their calculus.

• Preservation of closedness by linear transforma-
tions and vector sums.
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HYPERPLANE SEPARATION
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• Separating/supporting hyperplane theorem.

• Strict and proper separation theorems.

• Dual representation of closed convex sets as
unions of points and intersection of halfspaces.

A union of points An intersection of halfspaces

• Nonvertical separating hyperplanes.

3



CONJUGATE FUNCTIONS

x

Slope = y

0

(y, 1)

f(x)

inf
x⇥⇤n

{f(x)  x�y} = f(y)

• Conjugacy theorem: f = f⌥⌥

• Support functions

0

y

X

X(y)/y

x̂

• Polar cone theorem: C = C⌥⌥

− Special case: Linear Farkas’ lemma
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BASIC CONCEPTS OF CONVEX OPTIMIZATION

• Weierstrass Theorem and extensions.

• Characterization of existence of solutions in
terms of nonemptiness of nested set intersections.

Optimal
Solution

Level Sets of f

X

• Role of recession cone and lineality space.

• Partial Minimization Theorems: Character-
ization of closedness of f(x) = infz⌥ m F (x, z) in
terms of closedness of F .
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MIN COMMON/MAX CROSSING DUALITY

0!

"#$

%&'()*++*'(,*&'-(./

%#0()1*22&'3(,*&'-(4/

%

!

"5$

%

6
%

%#0()1*22&'3(,*&'-(4/

%&'()*++*'(,*&'-(./
. .

7

!

"8$

9

6
%

%
%#0()1*22&'3(,*&'-(4/

%&'()*++*'(,*&'-(./

.

7

70 0

0

u u

u

w w

w

M M

M

M

M

Min Common
Point w

Min Common
Point w

Min Common
Point w

Max Crossing
Point q

Max Crossing
Point q Max Crossing

Point q

(a) (b)

(c)

• Defined by a single set M  ◆n+1.

• w⇥ = inf
(0,w)⌥M w

• q⇥ = supµ n q(µ) =
�

inf
(u,w) M{w + µ⇧u⌥ ⌥ }

• Weak duality: q⇥ ⌃ w⇥

• Two key questions:
− When does strong duality q⇥ = w⇥ hold?
− When do there exist optimal primal and dual

solutions?
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MC/MC THEOREMS (M CONVEX, W ⇥ < ∞)

• MC/MC Theorem I: We have q⇥ = w⇥ if and
only if for every sequence

⇤
(uk, wk)

⌅
 M with

uk ⌦ 0, there holds

w⇥ ⌃ lim inf wk.
k⌅⌃

• MC/MC Theorem II: Assume in addition that
−∞ < w⇥ and that

D =
⇤
u | there exists w ✏ ◆ with (u, w) ✏ M}

contains the origin in its relative interior. Then
q⇥ = w⇥ and there exists µ such that q(µ) = q⇥.

• MC/MC Theorem III: Similar to II but in-
volves special polyhedral assumptions.

(1) M is a “horizontal translation” of M̃ by −P ,

˜M = M −
⇤
(u, 0) | u ✏ P

⌅
,

where P : polyhedral and M̃ : convex.

(2) We have ˜ri(D)  P = Ø, where

D̃ = u | there exists w ✏ ◆ with (u, w) ✏ M̃}

⇣
⇤
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IMPORTANT SPECIAL CASE

• Constrained optimization: infx⌥X, g(x)⇤0

f(x)

• Perturbation function (or primal function)

p(u) = inf f(x),
x⌥X, g(x)⇤u

0 u

�
(g(x), f(x)) | x  X

⇥

M = epi(p)

w = p(0)

p(u)

q

• Introduce L(x, µ) = f(x) + µ⇧g(x). Then

q(µ) = inf ) +
u⌥ 

⇤
p(u µ⇧u

r

= inf

⌅

f(x) + µ⇧u
r

�
u⌥ , x⌥X, g(x)⇤u

inf
= x⌥X L(x, µ)

⇤

if µ ⌥ 0,

⌅

−∞ otherwise.
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NONLINEAR FARKAS’ LEMMA

• Let X  ◆n, f : X ⌘⌦ ◆, and gj : X ⌘⌦ ◆,
j = 1, . . . , r, be convex. Assume that

f(x) ⌥ 0, ✓ x ✏ X with g(x) ⌃ 0

Let

Q⇥ =
⇤
µ | µ ⌥ 0, f(x) + µ⇧g(x) ⌥ 0, ✓ x ✏ X

⌅
.

• Nonlinear version: Then Q⇥ is nonempty and
compact if and only if there exists a vector x ✏ X
such that gj(x) < 0 for all j = 1, . . . , r.

0
(µ, 1)

(b)

0}0

(c)

0
(µ, 1)

(a)

�
(g(x), f(x)) | x ⌅ X

⇥ �
(g(x), f(x)) | x ⌅ X

⇥ �
(g(x), f(x)) | x ⌅ X

⇥

�
g(x), f(x)

⇥

• Polyhedral version: Q⇥ is nonempty if g is
linear [g(x) = Ax − b] and there exists a vector
x ✏ ri(X) such that Ax− b ⌃ 0.
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CONSTRAINED OPTIMIZATION DUALITY

minimize f(x)

subject to x ✏ X, gj(x) ⌃ 0, j = 1, . . . , r,

where X  ◆n, f : X ⌘⌦ ◆ and gj : X ⌘⌦ ◆ are
convex. Assume f⇥: finite.

• Connection with MC/MC: M = epi(p) with
p(u) = infx⌥X, g(x)

f(x)⇤u

• Dual function:

µ
q µ) =

�
inf

( x L(x, µ) if⌥X ⌥ 0,
−∞ otherwise

where L(x, µ) = f(x) + µ⇧g(x) is the Lagrangian
function.

• Dual problem of maximizing q(µ) over µ ⌥ 0.

• Strong Duality Theorem: q⇥ = f⇥ and there
exists dual optimal solution if one of the following
two conditions holds:

(1) There exists x ✏ X such that g(x) < 0.

(2) The functions gj , j = 1, . . . , r, are a⌅ne, and
there exists x ri(X) such that g(x) 0.✏ ⌃
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OPTIMALITY CONDITIONS

• We have q⇥ = f⇥, and the vectors x⇥ and µ⇥ are
optimal solutions of the primal and dual problems,
respectively, iff x⇥ is feasible, µ⇥ ⌥ 0, and

x⇥ ✏ arg min L(x, µ⇥), µ⇥j gj(x
⇥) = 0, j.

x⌥X
✓

• For the linear/quadratic program

minimize 1
2x⇧Qx + c⇧x

subject to Ax ⌃ b,

where Q is positive semidefinite, (x⇥, µ⇥) is a pri-
mal and dual optimal solution pair if and only if:

(a) Primal and dual feasibility holds:

Ax⇥ ⌃ b, µ⇥ ⌥ 0

(b) Lagrangian optimality holds [x⇥ minimizes
L(x, µ⇥) over x ✏ ◆n]. (Unnecessary for LP.)

(c) Complementary slackness holds:

(Ax⇥ − b)⇧µ⇥ = 0,

i.e., µ⇥j > 0 implies that the jth constraint is tight.
(Applies to inequality constraints only.)
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FENCHEL DUALITY

• Primal problem:

minimize f
1

(x) + f
2

(x)

subject to x ✏ ◆n,

where f
1

: ◆n ⌘⌦ (−∞,∞] and f
2

: ◆n ⌘⌦ (−∞,∞]
are closed proper convex functions.

• Dual problem:

minimize f⌥
1

(⌥) + f⌥
2

(−⌥)

subject to ⌥ ✏ ◆n,

where f⌥
1

and f⌥
2

are the conjugates.

Slope

Slope

x x

f1(x)

f2(x)

q()

f = q

f
1 ()

f
2 ()
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CONIC DUALITY

• Consider minimizing f(x) over x ✏ C, where f :
◆n ⌘⌦ (−∞,∞] is a closed proper convex function
and C is a closed convex cone in ◆n.

• We apply Fenchel duality with the definitions

f
1

(x) = f(x), f
2

(x) =
�

0 if x ✏ C,
∞ if x /✏ C.

• Linear Conic Programming:

minimize c⇧x

subject to x− b ✏ S, x ✏ C.

• The dual linear conic problem is equivalent to

minimize b⇧⌥

subject to ⌥− c ✏ S⌦, ⌥ ✏ Ĉ.

• Special Linear-Conic Forms:

min c⇧x ,
Ax=b, x C

⇐⇒ max b⇧⌥
⌥ −A0

ˆc ⇤⌥C

min c⇧x
Ax−b⌥C

⇐⇒ max b⇧⌥,
A0

ˆ⇤=c, ⇤⌥C

where x ✏ ◆n, ⌥ ✏ ◆m, c ✏ ◆n, b ✏ ◆m, A : m⇤ n.
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SUBGRADIENTS

0

(g, 1)

f(z)

�
x, f(x)

⇥

z

• ✏f(x) = Ø x ✏ ri dom(f)

• Conjugate Subgradient Theorem: If f is closed
proper convex, the following are equivalent for a
pair of vectors (x, y):

(i) x⇧y = f(x) + f⌥(y).

(ii) y ✏ ✏f(x).

(iii) x ✏ ✏f⌥(y).

• Characterization of optimal solution set X⇥ =
arg minx n f(x) of closed proper convex f :⌥ 

(a) X⇥ = ✏f⌥(0).

(b) X⇥ is nonempty if 0 ✏ ri dom(f⌥) .

(c) X⇥ is nonempty and compact

�

if

⇥

and only if
0 ✏ int dom(f⌥) .

⇣ for
� ⇥

.

� ⇥
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CONSTRAINED OPTIMALITY CONDITION

• Let f : ◆n ⌘⌦ (−∞,∞] be proper convex, let X
be a convex subset of ◆n, and assume that one of
the following four conditions holds:

(i) ri
�
dom(f)  ri(X) = Ø.

(ii) f is polyhedral

⇥

and dom(f)  ri(X) = Ø.

(iii) X is polyhedral and ri
�
dom(f)

⇥
X = Ø.

(iv) f and X are polyhedral, and dom(f) X = Ø.

Then, a vector x⇥ minimizes f over X iff there ex-
ists g ✏ ✏f(x⇥) such that −g belongs to the normal
cone NX(x⇥), i.e.,

g⇧(x− x⇥) ⌥ 0, ✓ x ✏ X.

⇣

⇣

⇣

⇣

Level Sets of f

⌃f(x∗)

x∗

Level Sets of f

x∗

⇧f(x∗)
g

C C

NC(x∗)
NC(x∗)
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COMPUTATION: PROBLEM RANKING IN

INCREASING COMPUTATIONAL DIFFICULTY

• Linear and (convex) quadratic programming.
− Favorable special cases.

• Second order cone programming.

• Semidefinite programming.

• Convex programming.
− Favorable cases, e.g., separable, large sum.
− Geometric programming.

• Nonlinear/nonconvex/continuous programming.
− Favorable special cases.
− Unconstrained.
− Constrained.

• Discrete optimization/Integer programming
− Favorable special cases.

• Caveats/questions:
− Important role of special structures.
− What is the role of “optimal algorithms”?
− Is complexity the right philosophical view to

convex optimization?
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DESCENT METHODS

• Steepest descent method: Use vector of min
norm on −✏f(x); has convergence problems.
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• Subgradient method:
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• ⇧-subgradient method (approx. subgradient)

• Incremental (possibly randomized) variants for
minimizing large sums (can be viewed as an ap-
proximate subgradient method).
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OUTER AND INNER LINEARIZATION

• Outer linearization: Cutting plane

x0 x1x2x3

f(x)

X

x

f(x0) + (x  x0)⇥g0

f(x1) + (x  x1)⇥g1

x∗

• Inner linearization: Simplicial decomposition

Level sets of f

f(x0)

f(x1)

f(x2)

f(x3)

X

x0

x1

x2

x3

x4 = x

x̃1

x̃2

x̃3

x̃4

• Duality between outer and inner linearization.
− Extended monotropic programming framework

Fenchel-like duality theory−
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PROXIMAL MINIMIZATION ALGORITHM

• A general algorithm for convex fn minimization

1
xk+1

✏ arg min
x⌥ n

�
f(x) +

2ck
⇠x− xk⇠2

 

− f : ◆n ⌘⌦ (−∞,∞] is closed proper convex
− ck is a positive scalar parameter

x
0

is arbitrary starting point−

k

k − 1
2ck

⇥x − xk⇥2

f(x)

xxk+1xk x

f(xk)

• xk+1

exists because of the quadratic.

• Strong convergence properties

• Starting point for extensions (e.g., nonquadratic
regularization) and combinations (e.g., with lin-
earization)
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PROXIMAL-POLYHEDRAL METHODS

Proximal-cutting plane method•

f(x)

xxk+1 xyk

Fk(x)

k  pk(x)

k

• Proximal-cutting plane-bundle methods: Re-
place f with a cutting plane approx. and/or change
quadratic regularization more conservatively.

• Dual Proximal - Augmented Lagrangian meth-
ods: Proximal method applied to the dual prob-
lem of a constrained optimization problem.

k

k − 1
2ck

⇥x − xk⇥2

f(x)

xxk+1xk

x∗

Slope = xk
Slope = xk+1

⇤k+1

Slope = x∗

⇥k

⇥k + x⇥
k⇤ − ck

2
⇥⇤⇥2

Primal Proximal Iteration Dual Proximal Iteration

f(⇤)
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DUALITY VIEW OF PROXIMAL METHODS

Proximal Method
Outer Linearization

Inner Linearization

Fenchel
Duality

Dual Proximal Method

Proximal Cutting 
Plane/Bundle Method

Proximal Simplicial 
Decomp/Bundle Method

Fenchel
Duality

• Applies also to cost functions that are sums of
convex functions

m

f(x) =
⌧

fi(x)

i=1

in the context of extended monotropic program-
ming
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INTERIOR POINT METHODS

• Barrier method: Let

xk = arg min f(x) + ⇧kB(x) , k = 0, 1, . . . ,
x⌥S

where S = {x

⇤

| gj(x) < 0, j

⌅

= 1, . . . , r} and the
parameter sequence {⇧k} satisfies 0 < ⇧k+1

< ⇧k for
all k and ⇧k ⌦ 0.

!
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 <
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• Ill-conditioning. Need for Newton’s method
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ADVANCED TOPICS

• Incremental subgradient-proximal methods

• Complexity view of first order algorithms
− Gradient-projection for differentiable prob-

lems
− Gradient-projection with extrapolation
− Optimal iteration complexity version (Nes-

terov)
− Extension to nondifferentiable problems by

smoothing

• Gradient-proximal method

• Useful extension of proximal. General (non-
quadratic) regularization - Bregman distance func-
tions
− Entropy-like regularization
− Corresponding augmented Lagrangean method

(exponential)
− Corresponding gradient-proximal method
− Nonlinear gradient/subgradient projection (en-

tropic minimization methods)
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