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Game Theory: Lecture 5 Introduction 

Outline 

Pricing-Congestion Game Example 

Existence of a Mixed Strategy Nash Equilibrium in Finite Games 

Existence in Games with Infinite Strategy Spaces 

Reading: 
Fudenberg and Tirole, Chapter 1. 
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Game Theory: Lecture 5 Example 

Introduction 

In this lecture, we study the question of existence of a Nash 
equilibrium in both games with finite and infinite pure strategy spaces. 

We start with an example, pricing-congestion game, where players 
have infinitely many pure strategies. 

We consider two instances of this game, one of which has a unique 
pure Nash equilibrium, and the other does not have any pure Nash 
equilibria. 
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Game Theory: Lecture 5 Example 

Pricing-Congestion Game 

Consider a price competition model studied in [Acemoglu and Ozdaglar 07]. 

1 unit of traffic

Reservation utility R

Consider a parallel link network with I links. Assume that d units of flow is 
to be routed through this network. We assume that this flow is the 
aggregate flow of many infinitesimal users. 

Let li (xi ) denote the latency function of link i , which represents the delay or 
congestion costs as a function of the total flow xi on link i . 

Assume that the links are owned by independent providers. Provider i sets a 
price pi per unit of flow on link i . 

The effective cost of using link i is pi + li (xi ). 

Users have a reservation utility equal to R, i.e., if pi + li (xi ) > R, then no 
traffic will be routed on link i . 
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Game Theory: Lecture 5 Example 

Example 1 

We consider an example with two links and latency functions 
l1(x1) = 0 and l2(x2) = 3

2 
x2 . For simplicity, we assume that R = 1 

and d = 1. 
Given the prices (p1, p2), we assume that the flow is allocated 
according to Wardrop equilibrium, i.e., the flows are routed along 
minimum effective cost paths and the effective cost cannot exceed the 
reservation utility. 

Definition 

A flow vector x = [xi ]i=1,...,I is a Wardrop equilibrium if ∑I
i=1 xi ≤ d and 

pi + li (xi ) = min{pj + lj (xj )}, for all i with xi > 0, 
j 

pi + li (xi ) ≤ R, for all i with xi > 0, 

with ∑I = d if minj {pj + lj (xj )} < R. i=1 xi 
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Game Theory: Lecture 5 Example 

Example 1 (Continued) 

We use the preceding characterization to determine the flow allocation on 
each link given prices 0 ≤ p1, p2 ≤ 1: 

x2(p1, p2) = 
� 

2 
3 (p1 − p2), 
0, 

p1 ≥ p2, 
otherwise, 

and x1(p1, p2) = 1 − x2(p1, p2). 

The payoffs for the providers are given by: 

u1(p1, p2) = p1 × x1(p1, p2) 
u2(p1, p2) = p2 × x2(p1, p2) 

We find the pure strategy Nash equilibria of this game by characterizing the 
best response correspondences, Bi (p−i ) for each player. 

The following analysis assumes that at the Nash equilibria (p1, p2) of 
the game, the corresponding Wardrop equilibria x satisfies x1 > 0, 
x2 > 0, and x1 + x2 = 1. For the proofs of these statements, see 
[Acemoglu and Ozdaglar 07]. 
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Game Theory: Lecture 5 Example 

Example 1 (Continued) 

In particular, for a given p2, B1(p2) is the optimal solution set of the 
following optimization problem 

maximize 0≤p1≤1, 0≤x1≤1 p1x1 

3 
subject to p1 = p2 + (1 − x1)

2 

Solving the preceding optimization problem, we find that 

B1(p2) = min 1,
3 

+ 
p2 

. 
4 2 

Similarly, B2(p1) = p
2
1 . 

7 



Game Theory: Lecture 5 Example 

Example 1 (Continued) 
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The figure illustrates the best response correspondences as a function 
of p1 and p2. The correspondences intersect at the unique point 
(p1, p2) = (1, 12 ), which is the unique pure strategy equilibrium. 
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Game Theory: Lecture 5 Example 

Example 2 

We next consider a similar example with latency functions given by 

0 if 0 ≤ x ≤ 1/2 
l1(x) = 0, l2(x) = x−1/2 x ≥ 1/2, 

for some sufficiently small � > 0.


The following list considers all candidate Nash equilibria (p1, p2) and 
profitable unilateral deviations for � sufficiently small, thus establishing the 
nonexistence of a pure strategy Nash equilibrium: 

p1 = p2 = 0: A small increase in the price of provider 1 will generate

positive profits, thus provider 1 has an incentive to deviate.

p1 = p2 > 0: Let x be the corresponding flow allocation. If x1 = 1,

then provider 2 has an incentive to decrease its price. If x1 < 1, then

provider 1 has an incentive to decrease its price.

0 ≤ p1 < p2: Player 1 has an incentive to increase its price since its

flow allocation remains the same.

0 ≤ p2 < p1: For � sufficiently small, the profit function of player 2,

given p1, is strictly increasing as a function of p2, showing that

provider 2 has an incentive to increase its price.
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Game Theory: Lecture 5 Existence Results 

Existence Results 

We start by analyzing existence of a Nash equilibrium in finite 
(strategic form) games, i.e., games with finite strategy sets. 

Theorem 

(Nash) Every finite game has a mixed strategy Nash equilibrium. 

Implication: matching pennies game necessarily has a mixed strategy 
equilibrium. 

Why is this important? 

Without knowing the existence of an equilibrium, it is difficult (perhaps 
meaningless) to try to understand its properties. 
Armed with this theorem, we also know that every finite game has an 
equilibrium, and thus we can simply try to locate the equilibria. 
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Game Theory: Lecture 5 Existence Results 

Approach 

Recall that a mixed strategy profile σ∗ is a NE if 

ui (σi 
∗, σ∗ ) ≥ ui (σi , σ

∗ ), for all σi ∈ Σi .−i −i 

In other words, σ∗ is a NE if and only if σ∗ 
i ∈ B∗ (σ∗ ) for all i , 

(σ∗
−i −i 

where B−
∗ 

i −i ) is the best response of player i , given that the other 
players’ strategies are σ∗ 

−i . 

We define the correspondence B : Σ � Σ such that for all σ ∈ Σ, we 
have 

B(σ) = [Bi (σ−i )]i∈I (1) 

The existence of a Nash equilibrium is then equivalent to the 
existence of a mixed strategy σ such that σ ∈ B(σ): i.e., existence of 
a fixed point of the mapping B. 

We will establish existence of a Nash equilibrium in finite games using 
a fixed point theorem. 
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convex set not a convex set

Game Theory: Lecture 5 Existence Results 

Definitions


A set in a Euclidean space is compact if and only if it is bounded and 
closed. 
A set S is convex if for any x , y ∈ S and any λ ∈ [0, 1],

λx + (1 − λ)y ∈ S .
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There exists no optimal    that attains it

Game Theory: Lecture 5 Existence Results 

Weierstrass’s Theorem


Theorem 

(Weierstrass) Let A be a nonempty compact subset of a finite 
dimensional Euclidean space and let f : A R be a continuous function. →
Then there exists an optimal solution to the optimization problem 

minimize f (x) 
subject to x ∈ A. 
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Game Theory: Lecture 5 Existence Results 

Kakutani’s Fixed Point Theorem


Theorem 

(Kakutani) Let A be a non-empty subset of a finite dimensional 
Euclidean space. Let f : A � A be a correspondence, with 
x ∈ A �→ f (x) ⊆ A, satisfying the following conditions: 

A is a compact and convex set.


f (x) is non-empty for all x ∈ A.


f (x) is a convex-valued correspondence: for all x ∈ A, f (x) is a

convex set. 

n nf (x) has a closed graph: that is, if {x , y } → {x , y } with 
ny ∈ f (xn), then y ∈ f (x). 

Then, f has a fixed point, that is, there exists some x ∈ A, such that 
x ∈ f (x). 
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is not convex-valued does not have a 
closed graph

Game Theory: Lecture 5 Existence Results 

Kakutani’s Fixed Point Theorem—Graphical Illustration
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Game Theory: Lecture 5 Existence Results 

Proof of Nash’s Theorem 

The idea is to apply Kakutani’s theorem to the best response 
correspondence B : Σ � Σ. We show that B(σ) satisfies the 
conditions of Kakutani’s theorem. 

Σ is compact, convex, and non-empty. 
By definition 

Σ = ∏ Σi 
i∈I 

where each Σi = {x | ∑j xj = 1} is a simplex of dimension |Si | − 1, 
thus each Σi is closed and bounded, and thus compact. Their product 
set is also compact. 

B(σ) is non-empty. 
By definition,


Bi (σ−i ) = arg max ui (x , σ−i )

x∈Σi 

where Σi is non-empty and compact, and ui is linear in x . Hence, ui is 
continuous, and by Weirstrass’s theorem B(σ) is non-empty. 
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Game Theory: Lecture 5 Existence Results 

Proof (continued) 

3. B(σ) is a convex-valued correspondence. 

Equivalently, B(σ) ⊂ Σ is convex if and only if Bi (σ−i ) is convex for 
all i . Let σi

� , σi
�� ∈ Bi (σ−i ). 

Then, for all λ ∈ [0, 1] ∈ Bi (σ−i ), we have


ui (σ�i , σ−i ) ≥ ui (τi , σ−i ) for all τi ∈ Σi ,


ui (σ�i
�, σ−i ) ≥ ui (τi , σ−i ) for all τi ∈ Σi .


The preceding relations imply that for all λ ∈ [0, 1], we have 

λui (σi
� , σ−i ) + (1 − λ)ui (σi

��, σ−i ) ≥ ui (τi , σ−i ) for all τi ∈ Σi . 

By the linearity of ui , 

ui (λσi
� + (1 − λ)σi

��, σ−i ) ≥ ui (τi , σ−i ) for all τi ∈ Σi . 

Therefore, λσ� + (1 − λ)σ�� ∈ Bi (σ−i ), showing that B(σ) isi i 
convex-valued. 
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Game Theory: Lecture 5 Existence Results 

Proof (continued) 

4. B(σ) has a closed graph. 

Suppose to obtain a contradiction, that B(σ) does not have a closed 
graph. 
Then, there exists a sequence (σn , σ̂n) → (σ, σ̂) with σ̂n ∈ B(σn), but 
σ̂ ∈/ B(σ), i.e., there exists some i such that σ̂i ∈/ Bi (σ−i ). 
This implies that there exists some σ�i ∈ Σi and some � > 0 such that 

ui (σi
� , σ−i ) > ui (σ̂i , σ−i ) + 3�. 

By the continuity of ui and the fact that σn σ−i , we have for −i →
sufficiently large n, 

ui (σ�i , σ
n 
−i ) ≥ ui (σi

� , σ−i ) − �. 
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Game Theory: Lecture 5 Existence Results 

Proof (continued) 

[step 4 continued] Combining the preceding two relations, we obtain 

ui (σi
� , σn 

−i ) > ui (σ̂i , σ−i ) + 2� ≥ ui (σ̂i
n , σn 

−i ) + �, 

where the second relation follows from the continuity of ui . This 
contradicts the assumption that σ̂n ∈ Bi (σn 

−i ), and completes the i 
proof. 

The existence of the fixed point then follows from Kakutani’s theorem. 

If σ∗ ∈ B (σ∗), then by definition σ∗ is a mixed strategy equilibrium. 
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Game Theory: Lecture 5 Existence Results 

Existence of Equilibria for Infinite Games 

A similar theorem to Nash’s existence theorem applies for pure 
strategy existence in infinite games. 

Theorem 

(Debreu, Glicksberg, Fan) Consider a strategic form game 
�I , (Si )i∈I , (ui )i∈I � such that for each i ∈ I 

Si is compact and convex; 

ui (si , s−i ) is continuous in s−i ; 

ui (si , s−i ) is continuous and concave in si [in fact quasi-concavity 
suffices]. 

Then a pure strategy Nash equilibrium exists. 
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concave function not a concave function

Game Theory: Lecture 5 Existence Results 

Definitions


Suppose S is a convex set. Then a function f : S R is concave if 
for any x , y ∈ S and any λ ∈ [0, 1], we have 

→ 

f (λx + (1 − λ)y ) ≥ λf (x) + (1 − λ)f (y ) . 
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Game Theory: Lecture 5 Existence Results 

Proof 

Now define the best response correspondence for player i , 
Bi : S−i � Si , 

Bi (s−i ) = si
� ∈ Si | ui (si

�, s−i ) ≥ ui (si , s−i ) for all si ∈ Si . 

Thus restriction to pure strategies. 

Define the set of best response correspondences as 

B (s) = [Bi (s−i )]i ∈I . 

and 
B : S � S . 
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Game Theory: Lecture 5 Existence Results 

Proof (continued) 

We will again apply Kakutani’s theorem to the best response 
correspondence B : S � S by showing that B(s) satisfies the 
conditions of Kakutani’s theorem. 

S is compact, convex, and non-empty. 

By definition 
S = ∏ Si 

i∈I 

since each Si is compact [convex, nonempty] and finite product of 
compact [convex, nonempty] sets is compact [convex, nonempty]. 

B(s) is non-empty. 

By definition,

Bi (s−i ) = arg max ui (s, s−i )


s∈Si 

where Si is non-empty and compact, and ui is continuous in s by 
assumption. Then by Weirstrass’s theorem B(s) is non-empty. 
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Game Theory: Lecture 5 Existence Results 

Proof (continued) 

3.	 B(s) is a convex-valued correspondence. 

This follows from the fact that ui (si , s−i ) is concave [or quasi-concave] 
in si . Suppose not, then there exists some i and some s−i ∈ S−i such 
that Bi (s−i ) ∈ arg maxs∈Si 

ui (s, s−i ) is not convex. 
This implies that there exists si

�, si
�� ∈ Si such that si

�, si
�� ∈ Bi (s−i ) 

and λs � + (1 − λ)s �� ∈/ Bi (s−i ). In other words, i i 

λui (si
�, s−i ) + (1 − λ)ui (si

��, s−i ) > ui (λsi
� + (1 − λ) si

��, s−i ). 

But this violates the concavity of ui (si , s−i ) in si [recall that for a 
concave function f (λx + (1 − λ)y ) ≥ λf (x) + (1 − λ)f (y )]. 
Therefore B(s) is convex-valued. 

4.	 The proof that B(s) has a closed graph is identical to the previous 
proof. 
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Game Theory: Lecture 5 Existence Results 

Remarks


Nash’s theorem is a special case of this theorem: Strategy spaces are 
simplices and utilities are linear in (mixed) strategies, hence they are 
concave functions of (mixed) strategies. 

Continuity properties of the “Nash equilibrium set”: 
Consider strategic form games with finite pure strategy sets Si and 
utilities ui (s, λ), where ui is a continuous function of λ. 
Let G (λ) = �I , (Si ), (ui (s, λ))� and let E (λ) denote the Nash 
correspondence that associates with each λ, the set of (mixed) Nash 
equilibria of G (λ). 

Proposition 

Assume that λ ∈ Λ, where Λ is a compact set. Then E (λ) has a closed 
graph. 

Proof similar to the proof of closedness of B(σ) in Nash’s theorem. 
This does not imply continuity of the Nash equilibrium set E (λ)!! 
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Game Theory: Lecture 5 Existence Results 

Existence of Nash Equilibria 

Can we relax (quasi)concavity? 

Example: Consider the game where two players pick a location 
s1, s2 ∈ R2 on the circle. The payoffs are 

u1(s1, s2) = −u2(s1, s2) = d(s1, s2), 

where d(s1, s2) denotes the Euclidean distance between s1, s2 ∈ R2 . 

No pure Nash equilibrium. 

However, it can be shown that the strategy profile where both mix 
uniformly on the circle is a mixed Nash equilibrium. 
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Game Theory: Lecture 5 Existence Results 

A More Powerful Theorem


Theorem 

(Glicksberg) Consider a strategic form game �I , (Si )i∈I , (ui )i∈I � such 
that for each i ∈ I 

Si is a nonempty and compact metric space; 

ui (si , s−i ) is continuous in s. 

Then a mixed strategy Nash equilibrium exists. 

With continuous strategy spaces, space of mixed strategies infinite 
dimensional! 

We will prove this theorem in the next lecture. 
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