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Game Theory: Lecture 7 Introduction 

Outline


Uniqueness of a Pure Nash Equilibrium for Continuous Games 

Supermodular Games 

Reading: 
Rosen J.B., “Existence and uniqueness of equilibrium points for 
concave N-person games,” Econometrica, vol. 33, no. 3, 1965. 
Fudenberg and Tirole, Section 12.3. 
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Game Theory: Lecture 7 Uniqueness of a Pure Strategy Equilibrium 

Uniqueness of a Pure Strategy Nash Equilibrium in 
Continuous Games 

We have shown in the previous lecture the following result: 
Given a strategic form game �I , (Si ), (ui )�, assume that the strategy 
sets Si are nonempty, convex, and compact sets, ui (s) is continuous in 
s, and ui (si , s−i ) is quasiconcave in si . Then the game �I , (Si ), (ui )�
has a pure strategy Nash equilibrium. 

We have seen an example that shows that even under strict convexity 
assumptions, there may be infinitely many pure strategy Nash 
equilibria. 
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Game Theory: Lecture 7 Uniqueness of a Pure Strategy Equilibrium 

Uniqueness of a Pure Strategy Nash Equilibrium 

We will next establish conditions that guarantee that a strategic form 
game has a unique pure strategy Nash equilibrium, following the 
classical paper [Rosen 65]. 

Notation: 
Given a scalar-valued function f : Rn R, we use the notation �→ 
�f (x) to denote the gradient vector of f at point x , i.e., � �T 

�f (x) = 
∂f (x) 

, . . . , 
∂f (x) 

. 
∂x1 ∂xn 

Given a scalar-valued function u : ∏I
i=1 R

mi �→ R, we use the 
notation �i u(x) to denote the gradient vector of u with respect to xi 

at point x , i.e., � �T 

�i u(x) = 
∂u

∂x

(

i 

x
1 

) 
, . . . , 

∂

∂

u

x 
(

i
m
x

i 

) 
. (1) 
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Game Theory: Lecture 7 Uniqueness of a Pure Strategy Equilibrium 

Optimality Conditions for Nonlinear Optimization Problems 

Theorem (3) 

(Karush-Kuhn-Tucker conditions) Let x∗ be an optimal solution of the 
optimization problem 

maximize f (x) 
subject to gj (x) ≥ 0, j = 1, . . . , r , 

where the cost function f : Rn �→ R and the constraint functions gj : Rn �→ R 
are continuously differentiable. Denote the set of active constraints at x∗ as 
A(x∗) = {j = 1, . . . , r gj (x∗) = 0}. Assume that the active constraint 
gradients, �gj (x∗), j ∈

| 
A(x∗), are linearly independent vectors. Then, there 

exists a nonnegative vector λ∗ ∈ Rr (Lagrange multiplier vector) such that 

r 
�f (x∗) + ∑ λj

∗�gj (x∗) = 0, 
j=1 

λj 
∗gj (x∗) = 0, ∀ j = 1, . . . , r . (2) 
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Game Theory: Lecture 7 Uniqueness of a Pure Strategy Equilibrium 

Optimality Conditions for Nonlinear Optimization Problems 

For convex optimization problems (i.e., minimizing a convex function (or 
maximizing a concave function) over a convex constraint set), we can provide 
necessary and sufficient conditions for the optimality of a feasible solution: 

Theorem (4) 

Consider the optimization problem

maximize f (x)

subject to gj (x) ≥ 0, j = 1, . . . , r , 

where the cost function f : Rn �→ R and the constraint functions gj : Rn �→ R 
are concave functions. Assume also that there exists some ¯ x) > 0x such that gj ( ̄
for all j = 1, . . . , r . Then a vector x∗ ∈ Rn is an optimal solution of the 
preceding problem if and only if gj (x∗) ≥ 0 for all j = 1, . . . , r , and there exists a 
nonnegative vector λ∗ ∈ Rr (Lagrange multiplier vector) such that 

r 
�f (x∗) + ∑ λj 

∗�gj (x∗) = 0, 
j=1 

λj 
∗gj (x∗) = 0, ∀ j = 1, . . . , r . 
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Game Theory: Lecture 7 Uniqueness of a Pure Strategy Equilibrium 

Uniqueness of a Pure Strategy Nash Equilibrium 

We now return to the analysis of the uniqueness of a pure strategy 
equilibrium in strategic form games. 

We assume that for player i ∈ I , the strategy set Si is given by 

Si = {xi ∈ Rmi | hi (xi ) ≥ 0}, (3) 

where hi : Rmi R is a concave function. �→ 

Since hi is concave, it follows that the set Si is a convex set (exercise!). 

Therefore the set of strategy profiles S = ∏I
i=1 Si ⊂ ∏i

I 
=1 R

mi , being a 
Cartesian product of convex sets, is a convex set. 

Given these strategy sets, a vector x∗ ∈ ∏I 
=1 R

mi is a pure strategy Nash i
equilibrium if and only if for all i ∈ I , xi 

∗ is an optimal solution of 

maximizeyi ∈Rmi 

subject to 

ui (yi , x
∗ 
−i ) 

hi (yi ) ≥ 0. 

(4) 

We use the notation �u(x) to denote 

�u(x) = [�1u1(x), . . . , �I uI (x)]T . (5) 
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Game Theory: Lecture 7 Uniqueness of a Pure Strategy Equilibrium 

Uniqueness of a Pure Strategy Nash Equilibrium 

We introduce the key condition for uniqueness of a pure strategy Nash 
equilibrium. 

Definition 

We say that the payoff functions (u1, . . . , uI ) are diagonally strictly concave for 
x ∈ S, if for every x∗, x̄ ∈ S, we have 

(x̄ − x∗)T �u(x∗) + (x∗ − x̄)T �u(x̄) > 0. 

Theorem 

Consider a strategic form game �I , (Si ), (ui )�. For all i ∈ I , assume that the 
strategy sets Si are given by Eq. (3), where hi is a concave function, and there 
exists some x̃i ∈ Rmi such that hi (x̃i ) > 0. Assume also that the payoff functions 
(u1, . . . , uI ) are diagonally strictly concave for x ∈ S. Then the game has a 
unique pure strategy Nash equilibrium. 
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Game Theory: Lecture 7 Uniqueness of a Pure Strategy Equilibrium 

Proof 

Assume that there are two distinct pure strategy Nash equilibria. 

Since for each i ∈ I , both xi 
∗ and x̄i must be an optimal solution for an 

optimization problem of the form (4), Theorem 2 implies the existence of 
nonnegative vectors λ∗ = [λ1

∗ , . . . , λI 
∗]T and λ ¯ = [ λ̄ 

1, . . . , λ̄ 
I ]T such that 

for all i ∈ I , we have 

�i ui (x∗) + λi 
∗�hi (xi 

∗) = 0, (6) 

λ∗ 
i hi (xi 

∗) = 0, (7) 

and 
�i ui (x̄) + λ̄ 

i �hi (x̄i ) = 0, (8) 

λ̄ 
i hi (x̄i ) = 0. (9) 
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Game Theory: Lecture 7 Uniqueness of a Pure Strategy Equilibrium 

Proof 

xi − xi 
∗ xi )T 

T T) ) )∗−x x x x

¯

¯

¯

+ xi − xi 
∗ λi �hi (xi )T (xi 

∗¯ 
¯

> xi − xi 
∗ xi )T (xi 

∗ 

∑ 
¯

¯

¯

¯

∑

∑ 

¯

Multiplying Eqs. (6) and (8) by ( )T and (xi 
∗ 

¯

¯

respectively, and 

xi ) 

xi ), 

−

adding over all i ∈ I , we obtain 

0 =
 (
 �u(x∗) + (x∗ − �u( (10) 

)T (λi 
∗�hi (xi 

∗ ) +
 −

i∈I 

i∈I 

¯ (hλ �i i 

i∈I

∑ 
i∈I 

)T (λi 
∗�hi (xi 

∗ ) +
 −


¯

where to get the strict inequality, we used the assumption that the payoff 

Since the h are concave functions, we have i 

¯

functions are diagonally strictly concave for x ∈ S . 

xi − xi 
∗ xi ).hi (xi 

∗) + �hi (xi 
∗)T ( ) ≥ hi (
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Game Theory: Lecture 7 Uniqueness of a Pure Strategy Equilibrium 

Proof 

Using the preceding together with λ∗ 
i > 0, we obtain for all i , 

xi − xi 
∗ xi ) − hi (xi 

∗¯
)xi ¯

¯λi 
∗�hi (xi 

∗)T ( ) ≥ λi 
∗(hi ( ))


=
 λi 
∗hi (

≥ 0, 

where to get the equality we used Eq. (7), and to get the last inequality, we 
xi ) ≥ 0.¯used the facts λi 

∗ 

Similarly, we have

> 0 and hi (

¯λi �hi (xi )T (xi 
∗ xi ) ≥ 0.¯

Combining the preceding two relations with the relation in (10) yields a 
contradiction, thus concluding the proof. 

¯ −
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Game Theory: Lecture 7 Uniqueness of a Pure Strategy Equilibrium 

Sufficient Condition for Diagonal Strict Concavity 

Let U(x) denote the Jacobian of �u(x) [see Eq. (5)]. In particular, if the xi 
are all 1-dimensional, then U(x) is given by ⎛ ⎞ 

∂2u1(x) ∂2u1(x) 
∂x1

2 ∂x1∂x2 
· · · 

∂2u2(x) 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
U(x) = . . . . 

∂x2∂x1 
. . . 

Proposition 

For all i ∈ I , assume that the strategy sets Si are given by Eq. (3), where hi is a 
concave function. Assume that the symmetric matrix (U(x) + UT (x)) is 
negative definite for all x ∈ S, i.e., for all x ∈ S, we have 

y T (U(x) + UT (x))y < 0, ∀ y �= 0. 

Then, the payoff functions (u1, . . . , uI ) are diagonally strictly concave for x ∈ S. 
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Game Theory: Lecture 7 Uniqueness of a Pure Strategy Equilibrium 

Proof 

x ∈ S . ¯Let x∗, Consider the vector 

Since S is a convex set, x(λ) ∈ S . 

Because U(x) is the Jacobian of �u(x), we have 

d dx(λ) 
dλ 
�u(x(λ)) = U(x(λ)) 

d(λ) 

x̄ ,x(λ) = λx∗ + (1 − λ) for some λ ∈ [0, 1]. 

¯

x̄), 

x). 

= U(x(λ))(x∗ −

x̄)dλ = �u(x∗) −�u(
or � 1 

U(x(λ))(x∗ −
0 
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Game Theory: Lecture 7 Uniqueness of a Pure Strategy Equilibrium 

Proof 

Multiplying the preceding by (

x − x∗)T¯

¯

x − x∗)T 

�u(x∗) + (x∗ − x)T 

x)T [U(x(λ)) + UT (x(λ))](x∗ − x)dλ¯

¯

¯� 1 

yields 

x)¯(
 �u(
1 

(x∗ −= − 
2 0 

> 0, 

where to get the strict inequality we used the assumption that the 
symmetric matrix (U(x) + UT (x)) is negative definite for all x ∈ S . 
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Game Theory: Lecture 7 Supermodular Games 

Supermodular Games 

Supermodular games are those characterized by strategic complementarities 

Informally, this means that the marginal utility of increasing a player’s 
strategy raises with increases in the other players’ strategies. 

Implication best response of a player is a nondecreasing function of ⇒
other players’ strategies 

Why interesting? 

They arise in many models. 
Existence of a pure strategy equilibrium without requiring the 
quasi-concavity of the payoff functions. 
Many solution concepts yield the same predictions. 
The equilibrium set has a smallest and a largest element. 
They have nice sensitivity (or comparative statics) properties and 
behave well under a variety of distributed dynamic rules. 

Much of the theory is due to [Topkis 79, 98], [Milgrom and Roberts 90], 
[Milgrom and Shannon 94], and [Vives 90, 01]. 
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Game Theory: Lecture 7 Supermodular Games 

Lattices and Tarski’s Theorem


The machinery needed to study supermodular games is lattice theory and 
monotonicity results in lattice programming. 

Methods used are non-topological and they exploit order properties 

We first briefly summarize some preliminaries related to lattices. 

Definition 

Given a set S and a binary relation ≥, the pair (S , ≥) is a partially ordered 
set if ≥ is reflexive (x ≥ x for all x ∈ S), transitive (x ≥ y and y ≥ z 
implies that x ≥ z), and antisymmetric (x ≥ y and y ≥ x implies that 
x = y). 

A partially ordered set (S , ≥) is (completely) ordered if for x ∈ S and 
y ∈ S, either x ≥ y or y ≥ x. 
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Game Theory: Lecture 7 Supermodular Games 

Lattices

Definition 

A lattice is a partially ordered set (S , ≥) s.t. any two elements x , y have a least 
upper bound (supremum), supS (x , y ) = inf{z ∈ S |z ≥ x , z ≥ y }, and a greatest 
lower bound (infimum), infS (x , y ) = sup{z ∈ S |z ≤ x , z ≤ y } in the set. 

Supremum of {x , y } is denoted by x ∨ y and is called the join of x and y .


Infimum of {x , y } is denoted by x ∧ y and is called the meet of x and y .


Examples: 

Any interval of the real line with the usual order is a lattice, since any two

points have a supremum and infimum in the interval.


However, the set S ⊂ R2 , S = {(1, 0), (0, 1)}, is not a lattice with the

vector ordering (the usual componentwise ordering: x ≤ y if and only if

xi ≤ yi for any i), since (1, 0) and (0, 1) have no joint upper bound in S .


S � = {(0, 0), (0, 1), (1, 0), (1, 1)} is a lattice with the vector ordering. 

Similarly, the simplex in Rn (again with the usual vector ordering) 
{x ∈ Rn ∑i xi = 1, xi ≥ 0} is not a lattice, while the box 

0 ≤ x1 ≤ 1} is.{x ∈ Rn 
|
| 
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Game Theory: Lecture 7 Supermodular Games 

Lattices


Definition 

A lattice (S , ≥) is complete if every nonempty subset of S has a 
supremum and an infimum in S. 

Any compact interval of the real line with the usual order is a 
complete lattice, while the open interval (a, b) is a lattice but is not 
complete [indeed the supremum of (a, b) does not belong to (a, b)]. 
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Game Theory: Lecture 7 Supermodular Games 

Tarski’s Fixed Point Theorem 

We state the lattice theoretical fixed point theorem due to Tarski. 
Let (S , ≥) be a partially ordered set. A function f from S to S is 
increasing if for all x , y ∈ S , x ≥ y implies f (x) ≥ f (y ). 

Theorem (Tarski) 

Let (S , ≥) be a complete lattice and f : S → S an increasing function. 
Then, the set of fixed points of f , denoted by E , is nonempty and (E , ≥) 
is a complete lattice. 

s

f(s)

s

f(s)
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Game Theory: Lecture 7 Supermodular Games 

Supermodularity of a Function 

Definition 

Let (X , ≥) be a lattice. A function f : X → R is supermodular on S if for 
all x , y ∈ X 

f (x) + f (y ) ≤ f (x ∧ y ) + f (x ∨ y ). 

Note that supermodularity is automatically satisfied if X is single 
dimensional. 
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Game Theory: Lecture 7 Supermodular Games 

Monotonicity of Optimal Solutions 

From now on, we will assume that X ⊆ R.

The following analysis and theory extends to the case where X is a

lattice.


We first study the monotonicity properties of optimal solutions of 
parametric optimization problems. Consider a problem 

x(t) = arg max f (x , t), 
x∈X 

where f : X × T R, X ⊆ R, and T is some partially ordered set. → 

We will mostly focus on T ⊆ RK with the usual vector order, i.e., 
for some x , y ∈ T , x ≥ y if and only if xi ≥ yi for all i = 1, . . . , k. 

We are interested in conditions under which we can establish that 
x(t) is a nondecreasing function of t. 
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Game Theory: Lecture 7 Supermodular Games 

Increasing Differences 

Key property: Increasing differences. 

Definition 

Let X ⊆ R and T be some partially ordered set. A function f : X × T R has 
increasing differences in (x , t) if for all x � ≥ x and t � ≥ t, we have 

→ 

f (x �, t �) − f (x , t �) ≥ f (x �, t) − f (x , t). 

Intuitively: incremental gain to choosing a higher x (i.e., x � rather than x) 
is greater when t is higher, i.e., f (x �, t) − f (x , t) is nondecreasing in t. 

You can check that the property of increasing differences is symmetric : an 
equivalent statement is that if t � > t, then f (x , t �) − f (x , t) is 
nondecreasing in x . 

The previous definition gives an abstract characterization. The following 
result makes checking increasing differences easy in many cases. 
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Game Theory: Lecture 7 Supermodular Games 

Increasing Differences 

Lemma 

Let X ⊂ R and T ⊂ Rk for some k, a partially ordered set with the usual 
vector order. Let f : X × T R be a twice continuously differentiable →
function. Then, the following statements are equivalent: 

The function f has increasing differences in (x , t). 
For all t � ≥ t and all x ∈ X , we have 

∂f (x , t �) ∂f (x , t) 
. 

∂x 
≥ 

∂x 

For all x ∈ X, t ∈ T, and all i = 1, . . . , k, we have 

∂2f (x , t) ≥ 0. 
∂x∂ti 
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Example I – Network effects (positive externalities) 

A set I of users can use one of two products X and Y (e.g., Blu-ray and 
HD DVD). 

Bi (J, k) denotes payoff to i when a subset J of users use k and i ∈ J. 

There exists a positive externality if 

Bi (J, k) ≤ Bi (J �, k), when J ⊂ J �, 

i.e., player i better off if more users use the same technology as him. 

This leads to a strategic form game with actions Si = {X , Y } 

Define the order Y � X , which induces a lattice structure 

Given s ∈ S , let X (s) = {i ∈ I | si = X }, Y (s) = {i ∈ I | si = Y }. 
We define the payoff functions as 

ui (si , s−i ) = 
B
B

i

i 
(
(
Y
X 

(
(
s
s
)
)
,
, 
Y
X )

) 
if
if 

s
s
i

i 

=
= 

X
Y 

, 

It can be verified that payoff functions satisfy increasing differences. 
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Game Theory: Lecture 7 Supermodular Games 

Example II– Cournot As a Supermodular Game with 
Change of Order 

Consider Cournot duopoly model. Two firms choose the quantity they 
produce qi ∈ [0, ∞). 
Let P(Q) with Q = qi + qj denote the inverse demand (price)

function. Payoff function of each firm is

ui (qi , qj ) = qi P(qi + qj ) − cqi . 

Assume P �(Q) + qi P
��(Q) ≤ 0 (firm i ’s marginal revenue decreasing 

in qj ). 

We can now verify that the payoff functions of the transformed game 
defined by s1 = q1, s2 = −q2 have increasing differences in (s1, s2). 
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Monotonicity of Optimal Solutions 

Key theorem about monotonicity of optimal solutions: 

Theorem (Topkis) 

Let X ⊂ R be a compact set and T be some partially ordered set. 
Assume that the function f : X × T R is continuous [or upper →
semicontinuous] in x for all t ∈ T and has increasing differences in (x , t). 
Define x(t) ≡ arg maxx∈X f (x , t). Then, we have: 

For all t ∈ T, x(t) is nonempty and has a greatest and least element,

denoted by x̄(t) and x(t) respectively.


For all t � ≥ t, we have x̄(t �) ≥ x̄(t) and x(t �) ≥ x(t).


Summary: if f has increasing differences, the set of optimal solutions 
x(t) is non-decreasing in the sense that the largest and the smallest 
selections are non-decreasing. 
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Proof


By the assumptions that for all t ∈ T , the function f (·, t) is upper 
semicontinuous and X is compact, it follows by the Weierstrass’ Theorem 
that x(t) is nonempty. For all t ∈ T , x(t) ⊂ X , therefore is bounded. 

Since X ⊂ R, to establish that x(t) has a greatest and lowest element, it 
suffices to show that x(t) is closed. 

¯Let {xk } be a sequence in x(t). Since X is compact, xk has a limit point x .

By restricting to a subsequence if necessary, we may assume without loss of


x̄ .generality that xk converges to

Since xk ∈ x(t) for all k, we have 

f (x k , t) ≥ f (x , t), ∀ x ∈ X . 

Taking the limit as k ∞ in the preceding relation and using the upper →
semicontinuity of f (·, t), we obtain 

f (x , t) ≥ lim sup 
k ∞→

¯ f (x k , t) ≥ f (x , t), ∀ x ∈ X , 

thus showing that ( )¯ belongs to , and proving the closedness claim. tx x 
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Proof 

=
x(t

By the fact that x maximizes f (x , t), we have 

f (x , t) − f (min(x , x �), t) ≥ 0. 

This implies (check the two cases: x ≥ x � and x � ≥ x) that 

f (max(x , x �), t) − f (x �, t) ≥ 0. 

By increasing differences of f , this yields 

f (max(x , x �), t �) − f (x �, t �) ≥ 0. 

¯

Thus max(x , x �) maximizes f (·, t �), i.e, max(x , x �) belongs to x(t �). Since 
x � is the greatest element of the set x(t �), we conclude that 
max(x , x �) ≤ x �, thus x ≤ x �. 

Let x ∈ x(t) and x ).Let t ≥ t. 

¯x̄(t) ≤ x(t
argument applies to the smallest maximizers. 
Since x is an arbitrary element of x(t), this implies �). A similar 
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Supermodular Games 

Definition 

The strategic game �I , (Si ), (ui )� is a supermodular game if for all i ∈ I : 

Si is a compact subset of R [or more generally Si is a complete lattice 
in Rmi ]; 

ui is upper semicontinuous in si , continuous in s−i . 

ui has increasing differences in (si , s−i ) [or more generally ui is 
supermodular in (si , s−i ), which is an extension of the property of 
increasing differences to games with multi-dimensional strategy 
spaces]. 
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Supermodular Games 

Applying Topkis’ theorem implies that each player’s “best response 
correspondence is increasing in the actions of other players”. 

Corollary 

Assume �I , (Si ), (ui )� is a supermodular game. Let 

Bi (s−i ) = arg max ui (si , s−i ). 
si ∈Si 

Then: 

B̄i (s

−i ) and Bi (s−
�
i ) ≥ Bi (s−i ). 

Bi (s−i ) has a greatest and least element, denoted by

Bi (s Bi (s¯¯
−i ) and Bi (s−i ). 

) ≥
If s−
�
i ≥ s−i , then −

�
i 

Applying Tarski’s fixed point theorem to B̄ establishes the existence of a 
pure Nash equilibrium for any supermodular game.


We next pursue a different approach which provides more insight into the

structure of Nash equilibria.


30 
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Supermodular Games 

Theorem (Milgrom and Roberts) 

Let �I , (Si ), (ui )� be a supermodular game. Then the set of strategies that 
survive iterated strict dominance in pure strategies has greatest and least elements 
¯
s and s, coinciding with the greatest and the least pure strategy Nash Equilibria.


Corollary 

Supermodular games have the following properties: 

Pure strategy NE exist. 

The largest and smallest strategies are compatible with iterated strict 
dominance (ISD), rationalizability, correlated equilibrium, and Nash 
equilibrium are the same. 

If a supermodular game has a unique NE, it is dominance solvable (and lots 
of learning and adjustment rules converge to it, e.g., best-response 
dynamics). 

31 
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Proof 

We iterate the best response mapping. Let S0 = S , and let

s0 = (s1

0 , . . . , sI 
0) be the largest element of S .


Let si 
1 = B̄i (s−

0 
i ) and Si 

1 = {si ∈ Si 
0 | si ≤ si 

1}. 

We show that any si > si 
1, i.e, any si ∈/ Si 

1, is strictly dominated by si 
1 . For 

all s−i ∈ S−i , we have 

ui (si , s−i ) − ui (si 
1 , s−i ) ≤ ui (si , s−

0 
i ) − ui (si 

1 , s−
0 
i ) 

< 0, 

where the first inequality follows by the increasing differences of ui (si , s−i ) 
in (si , s−i ), and the strict inequality follows by the fact that si is not a best 
response to s−

0 
i . 

Note that si 
1 ≤ si 

0 . 

Iterating this argument, we define 

si
k = B̄i (s −

k−
i 
1), Si

k = {si ∈ Sk−1 | si ≤ si
k }.i 
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Proof 

Assume sk ≤ sk−1 . Then, by Corollary (Topkis), we have


si
k+1 = B̄i (s−

k
i ) ≤ B̄i (s −

k−
i 
1) = si

k .


This shows that the sequence {sik } is a decreasing sequence, which is 
bounded from below, and hence it has a limit, which we denote by s̄  i . Only 
the strategies si ≤ s̄i are undominated. Similarly, we can start with 
s0 = (s1

0 , . . . , sI 
0) the smallest element in S and identify s. 

To complete the proof, we show that s̄ and s are NE. By construction, for all 
i and si ∈ Si , we have 

ui (si
k+1 , s−

k
i ) ≥ ui (si , s−

k
i ). 

Taking the limit as k ∞ in the preceding relation and using the upper →
semicontinuity of ui in si and continuity of ui in s−i , we obtain


ui (s̄i , s̄−i ) ≥ ui (si , s̄−i ),


showing the desired claim. 
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