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Game Theory: Lecture 8 Introduction 

Outline 

Review of Supermodular Games 

Potential Games 

Reading: 
Fudenberg and Tirole, Section 12.3. 
Monderer and Shapley, “Potential Games,” Games and Economic 
Behavior, vol. 14, pp. 124-143, 1996. 
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Game Theory: Lecture 8 Supermodular Games 

Supermodular Games 

Supermodular games are those characterized by strategic complementarities 

Informally, this means that the marginal utility of increasing a player’s 
strategy raises with increases in the other players’ strategies. 

Implication best response of a player is a nondecreasing function of ⇒
other players’ strategies 

Why interesting? 

They arise in many models. 
Existence of a pure strategy equilibrium without requiring the 
quasi-concavity of the payoff functions. 
Many solution concepts yield the same predictions. 
The equilibrium set has a smallest and a largest element. 
They have nice sensitivity (or comparative statics) properties and 
behave well under a variety of distributed dynamic rules. 

Much of the theory is due to [Topkis 79, 98], [Milgrom and Roberts 90], 
[Milgrom and Shannon 94], and [Vives 90, 01]. 
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Game Theory: Lecture 8 Supermodular Games 

Increasing Differences 

Key property: Increasing differences. 

Definition 

Let X ⊆ R and T be some partially ordered set. A function f : X × T R has 
increasing differences in (x , t) if for all x � ≥ x and t � ≥ t, we have 

→ 

f (x �, t �) − f (x , t �) ≥ f (x �, t) − f (x , t). 

Intuitively: incremental gain to choosing a higher x (i.e., x � rather than x) 
is greater when t is higher, i.e., f (x �, t) − f (x , t) is nondecreasing in t. 

You can check that the property of increasing differences is symmetric : an 
equivalent statement is that if t � ≥ t, then f (x , t �) − f (x , t) is 
nondecreasing in x . 

The previous definition gives an abstract characterization. The following 
result makes checking increasing differences easy in many cases. 
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Game Theory: Lecture 8 Supermodular Games 

Increasing Differences 

Lemma 

Let X ⊂ R and T ⊂ Rk for some k, a partially ordered set with the usual 
vector order. Let f : X × T R be a twice continuously differentiable →
function. Then, the following statements are equivalent: 

The function f has increasing differences in (x , t). 
For all t � ≥ t and all x ∈ X , we have 

∂f (x , t �) ∂f (x , t) 
. 

∂x 
≥ 

∂x 

For all x ∈ X, t ∈ T, and all i = 1, . . . , k, we have 

∂2f (x , t) ≥ 0. 
∂x∂ti 
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Game Theory: Lecture 8 Supermodular Games 

Monotonicity of Optimal Solutions 

Key theorem about monotonicity of optimal solutions: 

Theorem (Topkis) 

Let X ⊂ R be a compact set and T be some partially ordered set. 
Assume that the function f : X × T R is continuous [or upper →
semicontinuous] in x for all t ∈ T and has increasing differences in (x , t). 
Define x(t) ≡ arg maxx∈X f (x , t). Then, we have: 

For all t ∈ T, x(t) is nonempty and has a greatest and least element,

denoted by x̄(t) and x(t) respectively.


For all t � ≥ t, we have x̄(t �) ≥ x̄(t) and x(t �) ≥ x(t).


Summary: if f has increasing differences, the set of optimal solutions 
x(t) is non-decreasing in the sense that the largest and the smallest 
selections are non-decreasing. 
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Game Theory: Lecture 8 Supermodular Games 

Supermodular Games 

Definition 

The strategic game �I , (Si ), (ui )� is a supermodular game if for all i ∈ I : 

Si is a compact subset of R [or more generally Si is a complete lattice 
in Rmi ]; 

ui is upper semicontinuous in si , continuous in s−i . 

ui has increasing differences in (si , s−i ) [or more generally ui is 
supermodular in (si , s−i ), which is an extension of the property of 
increasing differences to games with multi-dimensional strategy 
spaces]. 
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Game Theory: Lecture 8 Supermodular Games 

Supermodular Games 

Applying Topkis’ theorem implies that each player’s “best response 
correspondence is increasing in the actions of other players”. 

Corollary 

Assume �I , (Si ), (ui )� is a supermodular game. Let 

Bi (s−i ) = arg max ui (si , s−i ). 
si ∈Si 

Then: 

B̄i (s

−i ) and Bi (s−
�
i ) ≥ Bi (s−i ). 

Bi (s−i ) has a greatest and least element, denoted by

Bi (s Bi (s¯¯
−i ) and Bi (s−i ). 

) ≥
If s−
�
i ≥ s−i , then −

�
i 

Applying Tarski’s fixed point theorem to B̄ establishes the existence of a 
pure Nash equilibrium for any supermodular game.


We next pursue a different approach which provides more insight into the

structure of Nash equilibria.
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Game Theory: Lecture 8 Supermodular Games 

Supermodular Games 

Theorem (Milgrom and Roberts) 

Let �I , (Si ), (ui )� be a supermodular game. Then the set of strategies that 
survive iterated strict dominance in pure strategies has greatest and least elements 
¯
s and s, coinciding with the greatest and the least pure strategy Nash Equilibria.


Corollary 

Supermodular games have the following properties: 

Pure strategy NE exist. 

The largest and smallest strategies are compatible with iterated strict 
dominance (ISD), rationalizability, correlated equilibrium, and Nash 
equilibrium are the same. 

If a supermodular game has a unique NE, it is dominance solvable (and lots 
of learning and adjustment rules converge to it, e.g., best-response 
dynamics). 
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Game Theory: Lecture 8 Supermodular Games 

Proof 

We iterate the best response mapping. Let S0 = S , and let

s0 = (s1

0 , . . . , sI 
0) be the largest element of S .


Let si 
1 = B̄i (s−

0 
i ) and Si 

1 = {si ∈ Si 
0 | si ≤ si 

1}. 

We show that any si > si 
1, i.e, any si ∈/ Si 

1, is strictly dominated by si 
1 . For 

all s−i ∈ S−i , we have 

ui (si , s−i ) − ui (si 
1 , s−i ) ≤ ui (si , s−

0 
i ) − ui (si 

1 , s−
0 
i ) 

< 0, 

where the first inequality follows by the increasing differences of ui (si , s−i ) 
in (si , s−i ), and the strict inequality follows by the fact that si is not a best 
response to s−

0 
i . 

Note that si 
1 ≤ si 

0 . 

Iterating this argument, we define 

si
k = B̄i (s −

k−
i 
1), Si

k = {si ∈ Sk−1 | si ≤ si
k }.i 
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Game Theory: Lecture 8 Supermodular Games 

Proof 

Assume sk ≤ sk−1 . Then, by Corollary (Topkis), we have


si
k+1 = B̄i (s−

k
i ) ≤ B̄i (s −

k−
i 
1) = si

k .


This shows that the sequence {sik } is a decreasing sequence, which is 
bounded from below, and hence it has a limit, which we denote by s̄  i . Only 
the strategies si ≤ s̄i are undominated. Similarly, we can start with 
s0 = (s1

0 , . . . , sI 
0) the smallest element in S and identify s. 

To complete the proof, we show that s̄ and s are NE. By construction, for all 
i and si ∈ Si , we have 

ui (si
k+1 , s−

k
i ) ≥ ui (si , s−

k
i ). 

Taking the limit as k ∞ in the preceding relation and using the upper →
semicontinuity of ui in si and continuity of ui in s−i , we obtain


ui (s̄i , s̄−i ) ≥ ui (si , s̄−i ),


showing the desired claim. 
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Game Theory: Lecture 8 Potential Games 

Potential Games


A strategic form game is a potential game [ordinal potential game, 
exact potential game] if there exists a function Φ : S R such that 
Φ (si , s−i ) gives information about ui (si , s−i ) for each 

→
i ∈ I . 

If so, Φ is referred to as the potential function. 

The potential function has a natural analogy to “energy” in physical 
systems. It will be useful both for locating pure strategy Nash 
equilibria and also for the analysis of “myopic” dynamics. 
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Game Theory: Lecture 8 Potential Games 

Potential Functions and Games 

Let G = �I , (Si ), (ui )� be a strategic form game. 

Definition 

A function Φ : S R is called an ordinal potential function for the game G if for →
each i ∈ I and all s−i ∈ S−i , 

ui (x , s−i ) − ui (z , s−i ) > 0 iff Φ(x , s−i ) − Φ(z , s−i ) > 0, for all x , z ∈ Si . 

G is called an ordinal potential game if it admits an ordinal potential. 

Definition 

A function Φ : S R is called an (exact) potential function for the game G if →
for each i ∈ I and all s−i ∈ S−i , 

ui (x , s−i ) − ui (z , s−i ) = Φ(x , s−i ) − Φ(z , s−i ), for all x , z ∈ Si . 

G is called an (exact) potential game if it admits a potential. 

13 



Game Theory: Lecture 8 Potential Games 

Example 

A potential function assigns a real value for every s ∈ S .


Thus, when we represent the game payoffs with a matrix (in finite

games), we can also represent the potential function as a matrix, each

entry corresponding to the vector of strategies from the payoff matrix.


Example 

The matrix P is a potential for the “Prisoner’s dilemma” game described 
below: � � � � 

(1, 1) (9, 0) 4 3 
G = , P = (0, 9) (6, 6) 3 0 
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Game Theory: Lecture 8 Potential Games 

Pure Strategy Nash Equilibria in Ordinal Potential Games


Theorem 

Every finite ordinal potential game has at least one pure strategy Nash 
equilibrium. 

Proof: The global maximum of an ordinal potential function is a pure 
strategy Nash equilibrium. To see this, suppose that s∗ corresponds 
to the global maximum. Then, for any i ∈ I , we have, by definition, 
Φ(si 

∗, s−
∗ 

i ) − Φ(s, s−
∗ 

i ) ≥ 0 for all s ∈ Si . But since Φ is a potential 
function, for all i and all s ∈ Si , 

ui (si 
∗, s−

∗ 
i ) − ui (s, s−

∗ 
i ) ≥ 0 iff Φ(si 

∗, s−
∗ 

i ) − Φ(s, s−
∗ 

i ) ≥ 0. 

Therefore, ui (si 
∗, s−

∗ 
i ) − ui (s, s−

∗ 
i ) ≥ 0 for all s ∈ Si and for all i ∈ I . 

Hence s∗ is a pure strategy Nash equilibrium. 
Note, however, that there may also be other pure strategy Nash

equilibria corresponding to local maxima.
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Game Theory: Lecture 8 Potential Games 

Examples of Ordinal Potential Games 

Example: Cournot competition. 

I firms choose quantity qi ∈ (0, ∞) 
The payoff function for player i given by ui (qi , q−i ) = qi (P(Q) − c). 

We define the function Φ(q1, ∏I 
=1 qi (P(Q) − c).i· · · , qI ) = 

Note that for all i and all q−i > 0, 

ui (qi , q−i ) − ui (qi
�, q−i ) > 0 iff Φ(qi , q−i ) − Φ(qi

�, q−i ) > 0, ∀ qi , qi
� > 0. 

Φ is therefore an ordinal potential function for this game. 
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Game Theory: Lecture 8 Potential Games 

Examples of Exact Potential Games 

Example: Cournot competition (again).


Suppose now that P(Q) = a − bQ and costs ci (qi ) are arbitrary.


We define the function


I I I I 

∑
 ∑
 2 − b
 ∑

1≤i<l≤I 

qi ql − ∑
Φ∗(q1, ) = a· · · , qn ci (qi ).qi − b qi 
i=1 i=1 i=1 

It can be shown that for all i and all q−i ,


ui (qi , q−i ) − ui (qi
�, q−i ) = Φ∗(qi , q−i ) − Φ∗(qi

�, q−i ), for all qi , qi
� > 0.


Φ is an exact potential function for this game.
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Game Theory: Lecture 8 Potential Games 

Simple Dynamics in Finite Ordinal Potential Games


Definition 

A path in strategy space S is a sequence of strategy vectors (s0 , s1 , )· · · 
such that every two consecutive strategies differ in one coordinate (i.e.,

exactly in one player’s strategy).

An improvement path is a path (s0 , s1 , ) such that,
· · · 
uik (s

k ) < uik (s
k+1) where sk and sk+1 differ in the ik

th coordinate. In 
other words, the payoff improves for the player who changes his strategy. 

An improvement path can be thought of as generated dynamically by 
“myopic players”, who update their strategies according to 1-sided 
better reply dynamic. 
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Game Theory: Lecture 8 Potential Games 

Simple Dynamics in Finite Ordinal Potential Games 

Proposition 

In every finite ordinal potential game, every improvement path is finite. 

Proof: Suppose (s0 , s1 , ) is an improvement path. Therefore we have, · · · 

Φ(s 0) < Φ(s 1) < · · · , 

where Φ is the ordinal potential. Since the game is finite, i.e., it has a finite 
strategy space, the potential function takes on finitely many values and the above 
sequence must end in finitely many steps. 

This implies that in finite ordinal potential games, every “maximal” 
improvement path must terminate in an equilibrium point. 

That is, the simple myopic learning process based on 1-sided better reply 
dynamic converges to the equilibrium set. 

Next week, we will show that other natural simple dynamics also converge to 
a pure equilibrium for potential games. 
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Game Theory: Lecture 8 Potential Games 

Characterization of Finite Exact Potential Games 

For a finite path γ = (s0 , . . . , sN ), let 
N 

I (γ) = ∑ u mi (s i ) − u mi (s i −1), 
i=1 

where mi denotes the player changing its strategy in the ith step of 
the path. 
The path γ = (s0 , . . . , sN ) is closed if s0 = sN . It is a simple closed 
path if in addition s l �= sk for every 0 ≤ l �= k ≤ N − 1. 

Theorem 

A game G is an exact potential game if and only if for all finite simple 
closed paths, γ, I (γ) = 0. Moreover, it is sufficient to check simple closed 
paths of length 4. 

Intuition: Let I (γ) �= 0. If potential existed then it would increase when 
the cycle is completed. 
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Game Theory: Lecture 8 Potential Games 

Infinite Potential Games


Proposition 

Let G be a continuous potential game with compact strategy sets. Then 
G has at least one pure strategy Nash equilibrium. 

Proposition 

Let G be a game such that Si ⊆ R and the payoff functions ui : S R→
are continuously differentiable. Let Φ : S R be a function. Then, Φ is→
a potential for G if and only if Φ is continuously differentiable and 

∂ui (s) ∂Φ(s)
= for all i ∈ I and all s ∈ S . 

∂si ∂si 
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Game Theory: Lecture 8 Potential Games 

Congestion Games 

Congestion Model: C = �I , M, (Si )i ∈I , (c j )j∈M� where: 

I = {1, 2, · · · , I } is the set of players. 

M = {1, 2, · · · , m} is the set of resources. 

Si is the set of resource combinations (e.g., links or common 
resources) that player i can take/use. A strategy for player i is si ∈ Si , 
corresponding to the subset of resources that this player is using. 

c j (k) is the benefit for the negative of the cost to each user who uses 
resource j if k users are using it. 

Define congestion game �I , (Si ), (ui )� with utilities 

ui (si , s−i ) = ∑ c j (kj ), 
j∈si 

where kj is the number of users of resource j under strategy s. 
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Game Theory: Lecture 8 Potential Games 

Congestion and Potential Games 

Theorem (Rosenthal (73)) 

Every congestion game is a potential game and thus has a pure strategy 
Nash equilibrium. 

Proof: For each j define
 j as the usage of resource j excluding¯ ik
player i , i.e.,


kj
i = ∑ I [j ∈ si � ] , 

i � =i 

¯

where I [j ∈ si ] is the indicator for the event that j ∈ si � . 

With this notation, the utility difference of player i from two 
strategies si and si

� (when others are using the strategy profile s−i ) is 

ui (si , s−i ) − ui (si
�, s−i ) = ∑ 

j∈si 

c
j (k̄j
i + 1) − ∑ 

j∈s

c
j (k̄j
i + 1). 

i
�
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Game Theory: Lecture 8 Potential Games 

Proof Continued 

Now consider the function � 
kj 

� 

Φ(s) =
 ∑
∑
 c
j (k) .
� 
j∈ i �∈I si � k=1 

We can also write ⎡ ⎤ 
k̄ i 
j 

∑ 
k 1=

j (k̄ i 
j + 1).∑
 j (k)Φ(si , s−i ) = ⎣
 ⎦ +
∑
c
 c
� 

j∈
i � �=i 

si j∈si 
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Game Theory: Lecture 8 Potential Games 

Proof Continued 

Therefore: 

= ∑ 

⎡
 ⎤

j 

¯ ik⎣ ∑
 j (k)⎦ + ∑ c j (k̄j
i + 1)Φ(si , s−i ) − Φ(si

�, s−i ) c
� 
j∈

i � �=i 
si � k=1 j∈si ⎡
 ⎤


j 
¯ ik

∑ ⎣ ∑
 j (k)⎦ + ∑ c j (k̄j
i + 1)−
 c
� 

j∈ si � k=1 j∈si
�

=ii � �

= ∑ c
j (k̄j
i + 1) − ∑ 

j∈s

c
j (k̄j
i + 1) 

j∈si i 

= ui (si , s−i ) − ui (si
�, s−i ). 
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