6.254: Game Theory with Engineering Applications Lecture 9: Computation of NE in finite games

Asu Ozdaglar MIT

March 4, 2010

Introduction

- In this lecture, we study various approaches for the computation of mixed Nash equilibrium for finite games.
- Our focus will mainly be on two player finite games (i.e., bimatrix games).
- We will also mention extensions to games with multiple players and continuous strategy spaces at the end.
- The two survey papers [von Stengel 02] and [McKelvey and McLennan 96] provide good references for this topic.

Zero-Sum Finite Games

- We consider a zero-sum game where we have two players. Assume that player 1 has n actions and player 2 has m actions.
- We denote the $n \times m$ payoff matrices of player 1 and 2 by A and B.
- Let x denote the mixed strategy of player 1, i.e., $x \in X$, where

$$
X=\left\{x \mid \sum_{i=1}^{n} x_{i}=1, x_{i} \geq 0\right\}
$$

and y denote the mixed strategy of player 2, i.e., $y \in Y$, where

$$
Y=\left\{y \mid \sum_{j=1}^{m} y_{j}=1, y_{j} \geq 0\right\}
$$

- Given a mixed strategy profile (x, y), the payoffs of player 1 and player 2 can be expressed in terms of the payoff matrices as,

$$
\begin{aligned}
& u_{1}(x, y)=x^{T} A y \\
& u_{2}(x, y)=x^{T} B y .
\end{aligned}
$$

Zero-Sum Finite Games

- Recall the definition of a Nash equilibrium: A mixed strategy profile $\left(x^{*}, y^{*}\right)$ is a mixed strategy Nash equilibrium if and only if

$$
\begin{gathered}
\left(x^{*}\right)^{T} A y^{*} \geq x^{T} A y^{*}, \quad \text { for all } x \in X \\
\left(x^{*}\right)^{T} B y^{*} \geq\left(x^{*}\right)^{T} B y, \quad \text { for all } y \in Y .
\end{gathered}
$$

- For zero-sum games, we have $B=-A$, hence the preceding relation becomes

$$
\left(x^{*}\right)^{T} A y^{*} \leq\left(x^{*}\right)^{T} A y, \quad \text { for all } y \in Y .
$$

- Combining the preceding, we obtain

$$
x^{T} A y^{*} \leq\left(x^{*}\right)^{T} A y^{*} \leq\left(x^{*}\right)^{T} A Y, \quad \text { for all } x \in X, y \in Y
$$

i.e., $\left(x^{*}, y^{*}\right)$ is a saddle point of the function x^{\top} Ay defined over $X \times Y$.

- Note that a vector $\left(x^{*}, y^{*}\right)$ is a saddle point if $x^{*} \in X, y^{*} \in Y$, and

$$
\begin{equation*}
\sup _{x \in X} x^{T} A y^{*}=\left(x^{*}\right)^{T} A y^{*}=\inf _{y \in Y}\left(x^{*}\right)^{T} A y . \tag{1}
\end{equation*}
$$

Zero-Sum Finite Games

- For any function $\phi: X \times Y \mapsto \mathbb{R}$, we have the minimax inequality:

$$
\begin{equation*}
\sup _{x \in X} \inf _{y \in Y} \phi(x, y) \leq \inf _{y \in Y} \sup _{x \in X} \phi(x, y) \tag{2}
\end{equation*}
$$

Proof: To see this, for every $\bar{x} \in X$, write

$$
\inf _{y \in Y} \phi(\bar{x}, y) \leq \inf _{y \in Y} \sup _{x \in X} \phi(x, y)
$$

and take the supremum over $\bar{x} \in X$ of the left-hand side.

- Eq. (1) implies that

$$
\inf _{y \in Y} \sup _{x \in X} x^{T} A y \leq \sup _{x \in X} x^{T} A y^{*}=\left(x^{*}\right)^{T} A y^{*}=\inf _{y \in Y}\left(x^{*}\right)^{T} A y \leq \sup _{x \in X} \inf _{y \in Y} x^{T} A y,
$$

which combined with the minimax inequality [cf. Eq. (2)], proves that equality holds throughout in the preceding.

- Hence, a mixed strategy profile $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium if and only if

$$
\left(x^{*}\right)^{T} A y^{*}=\inf _{y \in Y} \sup _{x \in X} x^{T} A y=\sup _{x \in X} \inf _{y \in Y} x^{T} A y .
$$

We refer to $\left(x^{*}\right)^{T} A y^{*}$ as the value of the game.

Zero-Sum Finite Games

- We next show that finding the mixed strategy Nash equilibrium strategies and the value of the game can be written as a pair of linear optimization problems.
- For a fixed y, we have

$$
\max _{x \in X} x^{T} A y=\max _{i=1, \ldots, n}\left\{[A y]_{i}\right\},
$$

and therefore

$$
\begin{aligned}
\min _{y \in Y} \max _{x \in X} x^{T} A Y & =\min _{y \in Y} \max \left\{[A y]_{1}, \ldots,[A y]_{n}\right\} \\
& =\min _{y \in Y, v 1_{n} \geq A y} v .
\end{aligned}
$$

- Hence, the value of the game and the Nash equilibrium strategy of player 2 can be obtained as the optimal value and the optimal solution of the preceding linear optimization problem.

Zero-Sum Finite Games

- Similarly, we have

$$
\begin{aligned}
\max _{x \in X} \min _{y \in Y} x^{T} A y & =\max _{x \in X} \min \left\{\left[A^{T} x\right]_{1}, \ldots,\left[A^{T} x\right]_{m}\right\} \\
& =\max _{x \in X,} \mathbf{1}_{m \leq A^{T} x} \xi
\end{aligned}
$$

- Linear optimization problems can be solved efficiently (in time polynomial in m and n).
- We next discuss alternative approaches for computing the mixed Nash equilibrium of two-player nonzero-sum finite games.

Nonzero-Sum Finite Games

Solution of Algebraic Equations:

- We first consider an inner or totally mixed Nash equilibrium $\left(x^{*}, y^{*}\right)$, i.e., $x_{i}^{*}>0$ for all i and $y_{j}^{*}>0$ for all j (all pure strategies are used with positive probability).
- Let a_{i} denote the rows of payoff matrix A and b_{j} denote the columns of payoff matrix B.
- Using the equivalent characterization of a mixed strategy Nash equilibrium (i.e., all pure strategies in the support of a Nash equilibrium strategy yields the same payoff, which is also greater than or equal to the payoffs for strategies outside the support), we have

$$
\begin{aligned}
a_{1} y^{*} & =a_{i} y^{*}, \quad i=2, \ldots, n, \\
\left(x^{*}\right)^{T} b_{1} & =\left(x^{*}\right)^{T} b_{j}, \quad j=2, \ldots, m .
\end{aligned}
$$

- The preceding is a system of linear equations which can be solved efficiently. (Note that for more than two players, we will have polynomial equations.)

Nonzero-Sum Finite Games

- However, the assumption that every strategy is played with positive probability is a very restrictive assumption. Most games do not have totally mixed Nash equilibria.
- For such games, we can use the preceding characterization to come up with a naive way to compute all the Nash equilibria of a finite two-player game: A mixed strategy profile $\left(x^{*}, y^{*}\right) \in X \times Y$ is a Nash equilibrium with support $\bar{S}_{1} \subset S_{1}$ and $\bar{S}_{2} \subset S_{2}$ if and only if

$$
\begin{array}{rll}
u=a_{i} y^{*}, & \forall i \in \bar{S}_{1}, & u \geq a_{i} y^{*},
\end{array} \quad \forall i \notin \bar{S}_{1,},
$$

- To find the right supports for the above procedure to work, we need to search over all possible supports. Since there are 2^{n+m} different supports, this procedure leads to an exponential complexity in the number of pure strategies of the players.

Remark: Computational complexity of computing Nash equilibrium for finite games lies in finding the right subdort sets.

Nonzero-Sum Finite Games

Optimization Formulation:

- A general method for the solution of a bimatrix game is to transform it into a nonlinear (in fact, a bilinear) programming problem, and to use the techniques developed for solutions of nonlinear programming problems.

Proposition

A mixed strategy profile $\left(x^{*}, y^{*}\right)$ is a mixed Nash equilibrium of the bimatrix game (A, B) if and only if there exists a pair $\left(p^{*}, q^{*}\right)$ such that $\left(x^{*}, y^{*}, p^{*}, q^{*}\right)$ is a solution to the following bilinear programming problem:

$$
\begin{align*}
\operatorname{maximize} & \left\{x^{T} A y+x^{T} B y-p-q\right\} \tag{3}\\
\text { subject to } & A y \leq p \mathbf{1}_{n}, \quad B^{T} x \leq q \mathbf{1}_{m}, \tag{4}\\
& \sum_{i} x_{i}=1, \quad \sum_{j} y_{j}=1, \\
& x \geq 0, y \geq 0, \tag{5}
\end{align*}
$$

where $\mathbf{1}_{n}\left(\mathbf{1}_{m}\right)$ denotes the $n(m)$-dimensional vector with all components equal to 1.

Proof

- Assume first that $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium.
- For any feasible solution of problem (3) (x, y, p, q), the constraints (4) imply that

$$
\begin{equation*}
x^{T} A y+x^{T} B y-p-q \leq 0 . \tag{6}
\end{equation*}
$$

- Let $p^{*}=\left(x^{*}\right)^{T} A y^{*}$ and $q^{*}=\left(x^{*}\right)^{T} B y^{*}$. Then the vector $\left(x^{*}, y^{*}, p^{*}, q^{*}\right)$ has an optimal value equal to 0 . If the vector $\left(x^{*}, y^{*}, p^{*}, q^{*}\right)$ is also feasible, it follows by Eq. (6) that it is an optimal solution of problem (3).
- Since $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium, we have

$$
\left(x^{*}\right)^{T} A y^{*} \geq x^{T} A y^{*}, \quad \forall x \in X
$$

- Choosing $x=e_{i}$, i.e., the $i^{t h}$ unit vector, which has all 0 s except a 1 in the $i^{\text {th }}$ component, we obtain

$$
p^{*}=\left(x^{*}\right)^{T} A y^{*} \geq\left[A y^{*}\right]_{i}
$$

for each i, showing that $\left(x^{*}, y^{*}, p^{*}, q^{*}\right)$ satisfies the first constraint in (4).

- The fact that it satisfies the second constraint can be shown similarly, hence proving that $\left(x^{*}, y^{*}, p^{*}, q^{*}\right)$ is an optimal solution of problem (3).

Proof

- Conversely, assume that $(\bar{x}, \bar{y}, \bar{p}, \bar{q})$ is an optimal solution of problem (3).
- Since all feasible solutions have nonpositive optimal value [see Eq. (6)], and any mixed strategy Nash equilibrium (which exists by Nash's Theorem) was shown to have an optimal value equal to 0 , it follows that

$$
\begin{equation*}
\bar{x}^{T} A \bar{y}+\bar{x}^{T} B \bar{y}-\bar{p}-\bar{q}=0 . \tag{8}
\end{equation*}
$$

- For any $x \geq 0$ with $\sum_{i} x_{i}=1$ and $y \geq 0$ with $\sum_{j} y_{j}=1$, the constraints in (4) imply that

$$
\begin{gathered}
x^{T} A \bar{y} \leq \bar{p} \\
y^{T} B^{T} \bar{x} \leq \bar{q}
\end{gathered}
$$

- In particular, we have $\bar{x}^{T} A \bar{y} \leq \bar{p}$ and $\bar{y}^{T} B^{T} \bar{x} \leq \bar{q}$. Combining with Eq. (8), we obtain $\bar{x}^{T} A \bar{y}=\bar{p}$ and $\bar{y}^{T} B^{T} \bar{x}=\bar{q}$.
- Together with the preceding set of equations, this yields

$$
\begin{array}{cc}
x^{T} A \bar{y} \leq \bar{x}^{T} A \bar{y}, & \text { for all } x \in X \\
y^{T} B^{T} \bar{x} \leq \bar{y}^{T} B^{T} \bar{x}, & \text { for all } y \in Y .
\end{array}
$$

Nonzero-Sum Finite Games

Linear Complementarity Problem Formulation

- Recall that a_{i} denotes the rows of the payoff matrix of player $1 A$, and b_{j} denotes the columns of the payoff matrix of player 2 .
- Then, the mixed strategy profile $(x, y) \in X \times Y$ is a Nash equilibrium if and only if

$$
\begin{aligned}
& x_{i}>0 \rightarrow \quad a_{i} y \\
&=\max _{k} a_{k} y \\
& y_{j}>0 \quad \rightarrow \quad x^{T} b_{j}=\max _{k} x^{T} b_{k}
\end{aligned}
$$

- By introducing the additional variables $r_{i} \in \mathbb{R}^{n}, r_{i} \geq 0$ for $i=1$, 2 (i.e., slack variables), and $v_{i} \in \mathbb{R}$, for $i=1,2$, we can write the preceding equivalently as

$$
\begin{gathered}
A y+r_{1}=v_{1} \mathbf{1}_{n}, \\
B^{T} x+r_{2}=v_{2} \mathbf{1}_{m}, \\
x^{T} r_{1}=0, \quad y^{T} r_{2}=0 .
\end{gathered}
$$

Since $x \geq 0, y \geq 0$, and $r_{i} \geq 0$, the last equation also implies that $x_{1} r_{1 i}=0$ for all $i=1, \ldots, n$ and $y_{j} r_{2, j}=0$.

Nonzero-Sum Finite Games

- Assume now that $v_{1}>0$ and $v_{2}>0$ (which holds if all components of A and B are positive).
- We normalize the variables y and r_{1} by v_{1}, and x and r_{2} by v_{2} and use the notation

$$
\begin{aligned}
z=[x, y]^{T}, & r=\left[r_{1}, r_{2}\right]^{T}, \quad q=\left[\mathbf{1}_{n}, \mathbf{1}_{m}\right]^{T}, \\
U & =\left(\begin{array}{cc}
0 & A \\
B^{T} & 0
\end{array}\right) .
\end{aligned}
$$

- If we further drop the constraints $\sum_{i} x_{i}=1$ and $\sum_{j} y_{j}=1$ (at the expense of having an additional extraneous solution $z=[0,0]^{T}$), we obtain the following linear complementarity problem formulation

$$
\begin{gather*}
U z+r=q, \quad z \geq 0, r \geq 0, \tag{9}\\
z^{T} r=0 .
\end{gather*}
$$

- The last condition is referred to as the complementary slackness or the complementarity condition.

Extensions

- The formulations for nonzero-sum games we have discussed before can be generalized to multiple-player finite games.
- Recent work [Parrilo 06] has focused on two person zero-sum games with continuous strategy spaces and some structure on the payoff functions, and has shown that the equilibrium strategies and the value of the game can be obtained efficiently.
- Some of these results were extended by [Stein, Ozdaglar, Parrilo 08] to nonzero sum games.

Computing Approximate Nash Equilibria

- We next study a quasi-polynomial algorithm for computing an ϵ-Nash equilibrium.
- We follow the development of [Lipton, Markakis, and Mehta 03].
- Our focus will be on games with two players, in which both players have the same number of strategies n. We denote the $n \times n$ payoff matrices of players 1 and 2 by A and B, respectively.
- The next definition captures the notion of "simple mixed strategies".

Definition

A mixed strategy of player i is called \mathbf{k}-uniform if it is the uniform distribution on a subset \bar{S}_{i} of the pure strategies S_{i} with $\left|\bar{S}_{i}\right|=k$.

For example, for a player with 3 pure strategies both $x=[1 / 3,1 / 3,1 / 3]$ and $x=[2 / 3,1 / 3,0]$ are 3 -uniform strategies.

Computing Approximate Nash Equilibria

Recall the definition of an ϵ-equilibrium.
Definition
Given some scalar $\epsilon>0$, a mixed strategy profile (\bar{x}, \bar{y}) is an ϵ-equilibrium if

$$
\begin{array}{ll}
x^{\top} A \bar{y} \leq \bar{x}^{T} A \bar{y}+\epsilon & \text { for all } x \in X, \\
\bar{x}^{T} B y \leq \bar{x}^{T} B \bar{y}+\epsilon \quad \text { for all } y \in Y .
\end{array}
$$

The next theorem presents the main result.

Computing Approximate Nash Equilibria

Theorem

Assume that all the entries of the matrices A and B are between 0 and 1. Let $\left(x^{*}, y^{*}\right)$ be a mixed Nash equilibrium and let $\epsilon>0$. For all $k \geq \frac{32 \log n}{\epsilon^{2}}$, there exists a pair of k-uniform strategies (\bar{x}, \bar{y}) such that

- (\bar{x}, \bar{y}) is an ϵ-equilibrium.
- $\left|\bar{x}^{T} A \bar{y}-\left(x^{*}\right)^{T} A y^{*}\right|<\epsilon$, i.e., player 1 gets almost the same payoff as in the Nash equilibrium.
- $\left|\bar{x}^{T} B \bar{y}-\left(x^{*}\right)^{T} B y^{*}\right|<\epsilon$, i.e., player 2 gets almost the same payoff as in the Nash equilibrium.

The proof relies on a probabilistic sampling argument. This theorem establishes the existence of a k-uniform mixed strategy profile (\bar{x}, \bar{y}), which not only forms an ϵ-Nash equilibrium, but also provide both players a payoff ϵ close to the payoffs they would obtain at some Nash equilibrium.

Computing Approximate Nash Equilibria

Corollary

Consider a 2-player game with n pure strategies for each player. There exists an algorithm that is quasi-polynomial in n for computing an ϵ-Nash equilibrium.

- Let $k \geq \frac{32 \log n}{\epsilon^{2}}$.
- By an exhaustive search, we can find all k - uniform mixed strategies for each player.
- Verifying ϵ-equilibrium condition is easy since we need to check only deviations to pure strategies.
- The running time of the algorithm is quasi-polynomial, i.e., $n^{O(\log n)}$ since there are $\binom{n+k-1}{k}^{2} \approx n^{k}$ possible pairs of k-uniform strategies.

Basar T．and Olsder G．J．，Dynamic Noncooperative Game Theory， SIAM，Philadelphia， 1999.

Ripton R．J．，Markakis E．，and Mehta A．，＂Playing large games using simple strategies，＂ACM Conference in Electronic Commerce，pp． 36－41， 2003.

國 McKelvey R．D．and McLennan A．，＂Computation of Equilibria in Finite Games，＂in Handbook of Computational Economics，vol．I，pp． 87－142，Elsevier， 1996.
Rerilo P．A．，＂Polynomial games and sum of squares optimization，＂ Proc．of CDC， 2006.

雷 Stein N．D．，Ozdaglar A．，and Parrilo P．A．，＂Separable and low－rank games，＂to appear in International Journal of Game Theory， 2008.

目 Von Stengel B．，＂Computing equilibria for two－person games，＂in R．J． Aumann and S．Hart editors，Handbook of Game Theory，vol．3， chapter 45，pp．1723－1759，Amsterdam， 2002.

6.254 Game Theory with Engineering Applications

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

