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Game Theory: Lecture 9 Introduction 

Introduction


In this lecture, we study various approaches for the computation of 
mixed Nash equilibrium for finite games. 

Our focus will mainly be on two player finite games (i.e., bimatrix 
games). 

We will also mention extensions to games with multiple players and 
continuous strategy spaces at the end. 

The two survey papers [von Stengel 02] and [McKelvey and

McLennan 96] provide good references for this topic.
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Game Theory: Lecture 9 Zero-Sum Finite Games 

Zero-Sum Finite Games


We consider a zero-sum game where we have two players. Assume that

player 1 has n actions and player 2 has m actions.


We denote the n × m payoff matrices of player 1 and 2 by A and B.


Let x denote the mixed strategy of player 1, i.e., x ∈ X , where

n 

X = {x | ∑

i=1 

xi = 1, xi ≥ 0}, 

and y denote the mixed strategy of player 2, i.e., y ∈ Y , where 
m 

=1 
∑ 
j

Y = {y | yj = 1, yj ≥ 0}. 

Given a mixed strategy profile (x , y ), the payoffs of player 1 and player 2 
can be expressed in terms of the payoff matrices as, 

u1(x , y ) = x T Ay , 

u2(x , y ) = x T By . 
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Zero-Sum Finite Games


Recall the definition of a Nash equilibrium: A mixed strategy profile (x∗, y ∗) 
is a mixed strategy Nash equilibrium if and only if 

(x∗)T Ay ∗ ≥ x T Ay ∗ , for all x ∈ X , 

(x∗)T By ∗ ≥ (x∗)T By , for all y ∈ Y . 

For zero-sum games, we have B = −A, hence the preceding relation 
becomes 

(x∗)T Ay ∗ ≤ (x∗)T Ay , for all y ∈ Y . 

Combining the preceding, we obtain 

x T Ay∗ ≤ (x∗)T Ay ∗ ≤ (x∗)T AY , for all x ∈ X , y ∈ Y , 

i.e., (x∗, y∗) is a saddle point of the function xT Ay defined over X × Y . 

Note that a vector (x∗, y ∗) is a saddle point if x∗ ∈ X , y∗ ∈ Y , and 

sup x T Ay ∗ = (x∗)T Ay ∗ = inf (x∗)T Ay . (1) 
x∈X y ∈Y 
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Zero-Sum Finite Games


For any function φ : X × Y �→ R, we have the minimax inequality: 

sup inf φ(x , y ) ≤ inf sup φ(x , y ), (2) 
x∈X y ∈Y y ∈Y x∈X 

Proof: To see this, for every x̄ ∈ X , write 

inf φ(x̄ , y ) ≤ inf sup φ(x , y ) 
y ∈Y y ∈Y x∈X 

and take the supremum over x̄ ∈ X of the left-hand side. 

Eq. (1) implies that 

inf sup x T Ay ≤ sup x T Ay∗ = (x∗)T Ay ∗ = inf (x∗)T Ay ≤ sup inf x T Ay , 
y ∈Y x∈X x∈X y ∈Y x∈X y ∈Y 

which combined with the minimax inequality [cf. Eq. (2)], proves that 
equality holds throughout in the preceding. 

Hence, a mixed strategy profile (x∗, y ∗) is a Nash equilibrium if and only if 

(x∗)T Ay ∗ = inf sup x T Ay = sup inf x T Ay . 
y ∈Y x∈X x∈X y ∈Y 

We refer to (x∗)T Ay∗ as the value of the game. 
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Zero-Sum Finite Games


We next show that finding the mixed strategy Nash equilibrium strategies 
and the value of the game can be written as a pair of linear optimization 
problems. 

For a fixed y , we have 

max x T Ay = max 
x∈X i=1,...,n

{[Ay ]i }, 

and therefore 

min max x T AY = min max{[Ay ]1, . . . , [Ay ]n}
y ∈Y x∈X y ∈Y 

= min v . 
y ∈Y , v1n ≥Ay 

Hence, the value of the game and the Nash equilibrium strategy of player 2 
can be obtained as the optimal value and the optimal solution of the 
preceding linear optimization problem. 
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Zero-Sum Finite Games 

Similarly, we have 

max min x T Ay = max min{[AT x ]1, . . . , [AT x ]m}
x∈X y ∈Y x∈X 

= max ξ. 
x∈X , ξ1m ≤AT x 

Linear optimization problems can be solved efficiently (in time polynomial in 
m and n). 

We next discuss alternative approaches for computing the mixed Nash 
equilibrium of two-player nonzero-sum finite games. 
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Nonzero-Sum Finite Games 

Solution of Algebraic Equations: 

We first consider an inner or totally mixed Nash equilibrium (x∗, y ∗), i.e., 
xi 
∗ > 0 for all i and yj 

∗ > 0 for all j (all pure strategies are used with 
positive probability). 

Let ai denote the rows of payoff matrix A and bj denote the columns of 
payoff matrix B. 

Using the equivalent characterization of a mixed strategy Nash equilibrium 
(i.e., all pure strategies in the support of a Nash equilibrium strategy yields 
the same payoff, which is also greater than or equal to the payoffs for 
strategies outside the support), we have 

a1y ∗ = ai y
∗ , i = 2, . . . , n, 

(x∗)T b1 = (x∗)T bj , j = 2, . . . , m. 

The preceding is a system of linear equations which can be solved efficiently. 
(Note that for more than two players, we will have polynomial equations.) 
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Nonzero-Sum Finite Games 

However, the assumption that every strategy is played with positive 
probability is a very restrictive assumption. Most games do not have totally 
mixed Nash equilibria. 

For such games, we can use the preceding characterization to come up with 
a naive way to compute all the Nash equilibria of a finite two-player game: 
A mixed strategy profile (x∗, y ∗) ∈ X × Y is a Nash equilibrium with 
support S1 ⊂ S1 and S2 ⊂ S2 if and only if ¯ ¯

u = ai y
∗ , ∀ i ∈ S̄1, u ≥ ai y

∗ , ∀ i ∈/ S̄1, 

v = (x∗)T bj , ∀ j ∈ S̄2, v ≥ (x∗)T bj , ∀ j ∈/ S̄2, 

= 0, S1, = 0, S2.xi 
∗ ∀ i ∈/ ¯ yj 

∗ ∀ j ∈/ ¯

To find the right supports for the above procedure to work, we need to 
search over all possible supports. Since there are 2n+m different supports, 
this procedure leads to an exponential complexity in the number of pure 
strategies of the players. 

Remark: Computational complexity of computing Nash equilibrium for finite 
games lies in finding the right support sets. 
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Nonzero-Sum Finite Games 

Optimization Formulation: 

A general method for the solution of a bimatrix game is to transform it into 
a nonlinear (in fact, a bilinear) programming problem, and to use the 
techniques developed for solutions of nonlinear programming problems. 

Proposition 

A mixed strategy profile (x∗, y∗) is a mixed Nash equilibrium of the bimatrix 
game (A, B) if and only if there exists a pair (p∗, q∗) such that (x∗, y ∗, p∗, q∗) is 
a solution to the following bilinear programming problem: 

maximize {x T Ay + x T By − p − q} (3) 

subject to Ay ≤ p1n, BT x ≤ q1m, (4) 

∑ 
i 

∑
= 1, = 1,xi yj 
j 

x ≥ 0, y ≥ 0, (5) 
where 1n (1m) denotes the n (m)-dimensional vector with all components equal 
to 1. 
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Since all
any mixed strategy Nash equilibrium (which exists by Nash’s Theorem) was
shown to have an optimal value equal to 0, it follows that

x̄T Aȳ + x̄T Bȳ − p̄ − q̄ = 0. (7)

For any x ≥ 0 with ∑i xi = 1 and y ≥ 0 with ∑j yj = 1, the constraints in
(4) imply that

xT Aȳ ≤ p̄,

yT BT x̄ ≤ q̄.

In particular, we have x̄T Aȳ ≤ p̄ and ȳT BT x̄ ≤ q̄. Combining with Eq. (8),
we obtain x̄T Aȳ = p̄ and ȳT BT x̄ = q̄. Together with the preceding set of
equations, this yields

xT Aȳ ≤ x̄T Aȳ , for all x ∈ X ,

yT BT x̄ ≤ ȳT BT x̄ , for all y ∈ Y .

Game Theory: Lecture 9 Nonzero-Sum Finite Games 

Proof 

Assume first that (x∗, y ∗) is a Nash equilibrium. 

For any feasible solution of problem (3) (x , y , p, q), the constraints (4) 
imply that 

x T Ay + x T By − p − q ≤ 0. (6) 

Let p∗ = (x∗)T Ay ∗ and q∗ = (x∗)T By∗. Then the vector (x∗, y ∗, p∗, q∗) 
has an optimal value equal to 0. If the vector (x∗, y ∗, p∗, q∗) is also feasible, 
it follows by Eq. (6) that it is an optimal solution of problem (3). 

Since (x∗, y ∗) is a Nash equilibrium, we have 

(x∗)T Ay ∗ ≥ x T Ay ∗ , ∀x ∈ X . 

Choosing x = ei , i.e., the i th unit vector, which has all 0s except a 1 in the 
i th component, we obtain 

p∗ = (x∗)T Ay∗ ≥ [Ay ∗]i , 
for each i , showing that (x∗, y∗, p∗, q∗) satisfies the first constraint in (4). 

The fact that it satisfies the second constraint can be shown similarly, hence 
proving that (x∗, y ∗, p∗, q∗) is an optimal solution of problem (3). 

Conversely, assume that (  11 



Game Theory: Lecture 9 Nonzero-Sum Finite Games 

Proof 

Conversely, assume that (x , y , p, q) is an optimal solution of problem (3). 

Since all feasible solutions have nonpositive optimal value [see Eq. (6)], and 
any mixed strategy Nash equilibrium (which exists by Nash’s Theorem) was 
shown to have an optimal value equal to 0, it follows that 

¯¯¯¯

T A T Bx y + x q = 0.


For any x ≥ 0 with ∑i xi = 1 and y ≥ 0 with ∑j yj = 1, the constraints in


¯− −y p 

(4) imply that 

¯¯¯¯¯ (8) 

T Ay ≤¯
T TBy 

p̄, 

q̄. 

x 

¯ ≤x

T A T BT ¯¯¯
¯

¯

¯

¯
¯ and ≤x p y x q. 

andx y p y x q. 

¯

¯

¯

Together with the preceding set of equations, this yields 

¯

¯

¯

≤y x y , 

≤x y x , 

¯¯¯
In particular, we have Combining with Eq. (8), y 

T
≤
BT¯T Awe obtain =
 =


x T A T A for all x ∈ X , 

y T BT T BT for all y ∈ Y . 
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Nonzero-Sum Finite Games 

Linear Complementarity Problem Formulation 

Recall that ai denotes the rows of the payoff matrix of player 1 A, and bj 
denotes the columns of the payoff matrix of player 2. 

Then, the mixed strategy profile (x , y ) ∈ X × Y is a Nash equilibrium if and 
only if


xi > 0 ai y = max ak y ,
→ 
k 

yj > 0 x T bj = max x T bk .→ 
k 

By introducing the additional variables ri ∈ Rn , ri ≥ 0 for i = 1, 2 (i.e., 
slack variables), and vi ∈ R, for i = 1, 2, we can write the preceding 
equivalently as Ay + r1 = v11n, 

BT x + r2 = v21m, 

x T r1 = 0, y T r2 = 0. 

Since x ≥ 0, y ≥ 0, and ri ≥ 0, the last equation also implies that x1r1i = 0 
for all i = 1, . . . , n and yj r2,j = 0. 
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Nonzero-Sum Finite Games


Assume now that v1 > 0 and v2 > 0 (which holds if all components of A 
and B are positive). 

We normalize the variables y and r1 by v1, and x and r2 by v2 and use the 
notation


z = [x , y ]T , r = [r1, r2]T , q = [1n, 1m]T ,


0 A 
U = . 

BT 0 

If we further drop the constraints ∑i xi = 1 and ∑j yj = 1 (at the expense 

of having an additional extraneous solution z = [0, 0]T ), we obtain the

following linear complementarity problem formulation


Uz + r = q, z ≥ 0, r ≥ 0, (9) 

z T r = 0. 

The last condition is referred to as the complementary slackness or the 
complementarity condition. 
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Extensions


The formulations for nonzero-sum games we have discussed before 
can be generalized to multiple-player finite games. 

Recent work [Parrilo 06] has focused on two person zero-sum games 
with continuous strategy spaces and some structure on the payoff 
functions, and has shown that the equilibrium strategies and the value 
of the game can be obtained efficiently. 

Some of these results were extended by [Stein, Ozdaglar, Parrilo 08] 
to nonzero sum games. 
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Computing Approximate Nash Equilibria 

We next study a quasi-polynomial algorithm for computing an �-Nash 
equilibrium. 

We follow the development of [Lipton, Markakis, and Mehta 03]. 

Our focus will be on games with two players, in which both players have the 
same number of strategies n. We denote the n × n payoff matrices of 
players 1 and 2 by A and B, respectively. 

The next definition captures the notion of “simple mixed strategies”. 

Definition 

A mixed strategy of player i is called k-uniform if it is the uniform distribution on 
¯ ¯a subset Si of the pure strategies Si with |Si | = k. 

For example, for a player with 3 pure strategies both x = [1/3, 1/3, 1/3] and 
x = [2/3, 1/3, 0] are 3-uniform strategies. 
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Computing Approximate Nash Equilibria 

Recall the definition of an �-equilibrium. 

Definition 

Given some scalar � > 0, a mixed strategy profile (

x y + �¯¯

x , y ) is an �-equilibrium if 

for all x ∈ X , 

¯¯

T A T Ay ≤

T By ≤

¯x 

T Bx x y + � 

The next theorem presents the main result. 

¯¯¯ for all y ∈ Y . 
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Game Theory: Lecture 9 Nonzero-Sum Finite Games 

Computing Approximate Nash Equilibria 

Theorem 

Assume that all the entries of the matrices A and B are between 0 and 1. Let 
(x∗, y ∗) be a mixed Nash equilibrium and let � > 0. For all k ≥ 32logn 

x , y ) such that ¯¯
, there 

�2 

exists a pair of k-uniform strategies (

(
 y ) is an �-equilibrium. 

y − (x∗)T Ay ∗¯

¯

T Ax

x̄ , 

¯ < �, i.e., player 1 gets almost the same payoff as in 

the Nash equilibrium. 

y − (x∗)T By ∗


the Nash equilibrium.


The proof relies on a probabilistic sampling argument. This theorem establishes 

¯T Bx̄ < �, i.e., player 2 gets almost the same payoff as in 

¯¯the existence of a k − uniform mixed strategy profile (x , y ), which not only forms 
an �-Nash equilibrium, but also provide both players a payoff � close to the 
payoffs they would obtain at some Nash equilibrium. 
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Computing Approximate Nash Equilibria 

Corollary 

Consider a 2-player game with n pure strategies for each player. There exists an 
algorithm that is quasi-polynomial in n for computing an �-Nash equilibrium. 

Let k ≥ 32logn .
�2 

By an exhaustive search, we can find all k − uniform mixed strategies for 
each player. 

Verifying �-equilibrium condition is easy since we need to check only

deviations to pure strategies.


The running time of the algorithm is quasi-polynomial, i.e., nO(log n) since� �2 

there are 
n + 

k
k − 1 ≈ nk possible pairs of k-uniform strategies. 
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