Solutions to Homework 2

6.262 Discrete Stochastic Processes MIT, Spring 2011

Solution to Exercise 1.10:

a) We know that $Z(\omega)=X(\omega)+Y(\omega)$ for each $\omega \in \Omega$.

$$
\begin{aligned}
\operatorname{Pr}(Z(\omega)= \pm \infty) & =\operatorname{Pr}\{\omega ; Z(\omega)=+\infty \text { or } Z(\omega)=-\omega\} \\
& =\operatorname{Pr}\{\omega ; Z(\omega)=+\infty\}+\operatorname{Pr}\{\omega ; Z(\omega)=-\infty\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\{\omega ; Z(\omega)=+\infty\} & =\operatorname{Pr}\{\omega ; X(\omega)=\infty \text { or } Y(\omega)=\infty\} \\
& \leq \operatorname{Pr}\{\omega ; X(\omega)=\infty\}+\operatorname{Pr}\{\omega ; Y(\omega)=\infty\} \\
& =0+0=0 .
\end{aligned}
$$

We know that X is a random variable and based on the definition of random variables, we know that $\operatorname{Pr}\{\omega ; X(\omega)=\infty\}=0$.

Similarly, it can be proved that $\operatorname{Pr}\{\omega ; Z(\omega)=-\infty\}=0$. Thus, $\operatorname{Pr}\{\omega ; Z(\omega)= \pm \infty\}=0$.

Solution to Exercise 1.17:

a)

Since Y is integer-valued, $F_{Y}(y)$ and F_{Y}^{c} are constant between integer values. Thus, $\int_{0}^{\infty} F_{Y}(y) d y=\sum_{y=0}^{\infty} F_{Y}^{c}(y)$.

$$
\begin{aligned}
\mathbb{E}[Y] & =\sum_{y=0}^{+\infty} F_{Y}^{c}(y) \\
& =\sum_{y=0}^{+\infty} \frac{2}{(y+1)(y+2)} \\
& =\sum_{y=0}^{+\infty} \frac{2}{(y+1)}-\frac{2}{(y+2)} \\
& =\frac{2}{1}=2
\end{aligned}
$$

b) We can compute the PMF :

$$
\begin{aligned}
p_{Y}(y) & =F_{Y}(y)-F_{Y}(y-1) \\
& =1-\frac{2}{(y+1)(y+2)}-\left(1-\frac{2}{y(y+1)}\right) \\
& =\frac{4}{y(y+1)(y+2)}, \forall y>0 \\
\mathbb{E}[Y] & =\sum_{y=1}^{+\infty} y \cdot p_{Y}(y) \\
& =\sum_{y=1}^{+\infty} \frac{4}{(y+1)(y+2)} \\
& =\sum_{y=1}^{+\infty}\left(\frac{4}{(y+1)}-\frac{4}{(y+2)}\right)=\frac{4}{2}=2
\end{aligned}
$$

c) Condition on the event $[Y=y]$, the rv X has a uniform distribution over the interval $[1, y]$. So, $\mathbb{E}[X \mid Y=y]=(1+y) / 2$.

$$
\begin{aligned}
& \mathbb{E}[X]=\mathbb{E}[\mathbb{E}[X \mid Y=y]]=\mathbb{E}\left[\frac{1+y}{2}\right]=\frac{1+\mathbb{E}[y]}{2}=3 / 2 \\
& p_{X}(x)=\sum_{y=1}^{y=\infty} p_{X \mid Y}(x \mid y) p_{Y}(y) \\
&=\sum_{y=x}^{y=\infty} \frac{4}{y^{2}(y+1)(y+2)} \\
&=\sum_{y=x}^{y=\infty} \frac{-3}{y}+\frac{2}{y^{2}}+\frac{4}{y+1}-\frac{1}{y+2}
\end{aligned}
$$

It's too complicated to calculate this term.
d) Condition on the event $[Y=y]$, the rv Z has a uniform distribution over the interval $\left[1, y^{2}\right]$. So, $\mathbb{E}[X \mid Y=y]=\left(1+y^{2}\right) / 2$.

$$
\mathbb{E}[Z]=\left[\frac{1+y^{2}}{2}\right]=\frac{1}{2}+\frac{1}{2} \sum_{y=1}^{\infty} \frac{4 y}{(y+1)(y+2)}=\infty
$$

Solution to Exercise 1.31:

a)

We know that:

$$
\left|\int_{-\infty}^{0} e^{r x} \mathrm{~d} F(x) \leq \int_{-\infty}^{0}\right| e^{r x} \mid \mathrm{d} F(x)
$$

And if $r \geq 0$, for $x<0,\left|e^{r x}\right| \leq 1$. Thus,

$$
\left|\int_{-\infty}^{0} e^{r x} \mathrm{~d} F(x)\right| \leq \int_{-\infty}^{0} \mathrm{~d} F(x) \leq 1
$$

Similarly, when $r \leq 0,\left|e^{r x}\right| \leq 1$ for $x \geq 0$

$$
\left|\int_{0}^{\infty} e^{r x} \mathrm{~d} F(x)\right| \leq \int_{0}^{\infty}\left|e^{r x}\right| \mathrm{d} F(x) \leq \int_{0}^{\infty} \mathrm{d} F(x) \leq 1
$$

b) We know that for all $x \geq 0$, for each $0 \leq r \leq r_{1}, e^{r x} \leq e^{r_{1} x}$. Thus,

$$
\int_{0}^{\infty} e^{r x} \mathrm{~d} F(x) \leq \int_{0}^{\infty} e^{r_{1} x} \mathrm{~d} F(x)<\infty
$$

c) We know that for all $x \leq 0$, for each $r_{2} \leq r \leq 0, e^{r x} \leq e^{r_{2} x}$. Thus,

$$
\int_{-\infty}^{0} e^{r x} \mathrm{~d} F(x) \leq \int_{-\infty}^{0} e^{r_{2} x} \mathrm{~d} F(x)<\infty
$$

d) We know the value of $g_{X}(r)$ for $r=0$:

$$
g_{X}(0)=\int_{-\infty}^{0} d F(x)+\int_{0}^{\infty} d F(x)=1
$$

So for $r=0$, the moment generating function exists. We also know that the first integral exists for all $r \geq 0$. And if the second integral exists for a given $r_{1}>0$, it exists for all $0 \leq r \leq r_{1}$. So if $g_{X}(r)$ exists for some $r_{1} \geq 0$, it exists for all $0 \leq r \leq r_{1}$. Similarly, we can prove that if $g_{X}(r)$ exists for some $r_{2} \leq 0$, it exists for all $r_{2} \leq r \leq 0$. So the interval in which $g_{X}(r)$ exists is from some $r_{2} \leq 0$ to some $r_{1} \geq 0$.
e) We note immediately that with $f_{X}(x)=e^{-x}$ for $x \geq 0, g_{X}(1)=\infty$. With $f_{X}(x)=\left(a x^{-2}\right) e^{-x}$ for $x \geq 1$ and 0 otherwise, it is clear that $g_{X}(1)<\infty$. Here a is taken to be such that $\int_{1}^{\infty}\left(a x^{-2}\right) e^{-x} \mathrm{~d} x=1$.

Solution to Exercise 1.33:

Given that X_{i} 's are IID, we have $\mathbb{E}\left[S_{n}\right]=n \mathbb{E}[X]=n \delta$ and $\operatorname{Var}\left(S_{n}\right)=n \operatorname{Var}(X)=n \sigma^{2}$ where $\operatorname{Var}(X)=\sigma^{2}=\delta(1-\delta)$. Since $\operatorname{Var}(X)<\infty$, the CLT implies that the normalized version of S_{n}, defined as $Y_{n}=\left(S_{n}-n \mathbb{E}[X]\right) /(\sqrt{n} \sigma)$ will tend to a normalized Gaussian
distribution as $n \rightarrow \infty$, so we can use the integral in (1.81). First let us see what is happening and then we will verify the results.
a) The standard deviation of S_{n} is increasing in \sqrt{n} while the interval of the summation is a fixed interval about the mean. Thus, the probability distribution becomes flatter and more spread out as n increases, and the probability of interest tends to 0 . Analytically, let $Y_{n}=\left(S_{n}-n \mathbb{E}[X]\right) /(\sqrt{n} \sigma)$, then,

$$
\begin{equation*}
\sum_{i: n \delta-m \leq i \leq n \delta+m} \operatorname{Pr}\left\{S_{n}=i\right\} \sim F_{S_{n}}(n \delta+m)-F_{S_{n}}(n \delta-m)=F_{Y_{n}}\left(\frac{m}{\sqrt{n} \sigma}\right)-F_{Y_{n}}\left(-\frac{m}{\sqrt{n} \sigma}\right) \tag{1}
\end{equation*}
$$

For large n, Y_{n} becomes a standard normal,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i: n \delta-m \leq i \leq n \delta+m} \operatorname{Pr}\left\{S_{n}=i\right\}=\lim _{n \rightarrow \infty}\left(F_{Y_{n}}\left(\frac{m}{\sqrt{n} \sigma}\right)-F_{Y_{n}}\left(-\frac{m}{\sqrt{n} \sigma}\right)\right)=0 \tag{2}
\end{equation*}
$$

Comment: To be rigorous, which is not necessary here, the limit in (2) is taken as follows. We need to show that $F_{Y_{n}}\left(y_{n}\right) \rightarrow \Phi(y)$ (Φ is the cumulative gaussian distribution), where the sequence $y_{n} \rightarrow y$ and the functions $F_{Y_{n}} \rightarrow \Phi$ (pointwise). Consider an $\epsilon>0$ and pick N large enough so that for all $n \geq N$ we have $y-\epsilon \leq y_{n} \leq y+\epsilon$. Then we get, $F_{Y_{n}}(y-\epsilon) \leq F_{Y_{n}}\left(y_{n}\right) \leq F_{Y_{n}}(y+\epsilon), \forall n>N$ (since $F_{Y_{n}}$ is non-decreasing). Take the limit $n \rightarrow \infty$ which gives $\Phi(y-\epsilon) \leq \lim _{n \rightarrow \infty} F_{Y_{n}}\left(y_{n}\right) \leq \Phi(y+\epsilon)$ (by CLT). Now, take the limit $\epsilon \rightarrow \infty$ and since $\Phi($.$) is a continuous function, both sides of the inequality converge to the$ same value $\Phi(y)$ which completes the proof.
b) The summation here is over all terms below the mean plus the terms which exceed the mean by at most m. As $n \rightarrow \infty$, the normalized distribution (the distribution of Y_{n}) becomes Gaussian and the integral up to the mean becomes $1 / 2$. Analytically,

$$
\lim _{n \rightarrow \infty} \sum_{i: 0 \leq i \leq n \delta+m} \operatorname{Pr}\left\{S_{n}=i\right\}=\lim _{n \rightarrow \infty}\left(F_{Y_{n}}\left(\frac{m}{\sqrt{n} \sigma}\right)-F_{Y_{n}}\left(\frac{-n \delta}{\sqrt{n} \sigma}\right)\right)=1 / 2
$$

c) The interval of summation is increasing with n while the standard deviation is increasing with \sqrt{n}. Thus, in the limit, the probability of interest will include all the probability mass.

$$
\lim _{n \rightarrow \infty} \sum_{i: n(\delta-1 / m) \leq i \leq n(\delta+1 / m)} \operatorname{Pr}\left\{S_{n}=i\right\}=\lim _{n \rightarrow \infty}\left(F_{Y_{n}}\left(\frac{n}{m \sqrt{n} \sigma}\right)-F_{Y_{n}}\left(\frac{-n}{m \sqrt{n} \sigma}\right)\right)=1
$$

Solution to Exercise 1.38:

We know that S_{n} is a r.v. with mean 0 and variance $n \sigma^{2}$. According to CLT, both $S_{n} / \sigma \sqrt{n}$ and $S_{2 n} / \sigma \sqrt{2 n}$ converge in distribution to normal distribution with mean 0 and variance 1. But this does not imply the convergence of $S_{n} / \sigma \sqrt{n}-S_{2 n} / \sigma \sqrt{2 n}$.

$$
\begin{aligned}
\frac{S_{n}}{\sigma \sqrt{n}}-\frac{S_{2 n}}{\sigma \sqrt{2 n}} & =\frac{\sqrt{2} S_{n}-S_{2 n}}{\sigma \sqrt{2 n}} \\
& =\frac{\sqrt{2} \sum_{i=1}^{n} X_{i}-\sum_{i=1}^{2 n} X_{i}}{\sigma \sqrt{2 n}} \\
& =\left(\frac{\sqrt{2}-1}{\sqrt{2}}\right) \frac{\sum_{i=1}^{n} X_{i}}{\sigma \sqrt{n}}-\frac{1}{\sqrt{2}} \frac{\sum_{i=n+1}^{2 n} X_{i}}{\sigma \sqrt{n}}
\end{aligned}
$$

Independency of X_{i} 's imply the independency of $S_{n}=\sum_{i=1}^{n} X_{i}$ and $S_{n}^{\prime}=\sum_{i=n+1}^{2 n} X_{i}$. Both $S_{n} /(\sigma \sqrt{n})$ and $S_{n}^{\prime} /(\sigma \sqrt{n})$ converge in distribution to zero mean, unit variance normal distribution and they are independent. Thus, $\left(\frac{\sqrt{2}-1}{\sqrt{2}}\right) \frac{S_{n}}{\sigma \sqrt{n}}$ converges to a normal r.v. with mean 0 and variance $3 / 2-\sqrt{2}$ and is independent of $\left(\frac{1}{\sqrt{2}}\right) \frac{S_{n}^{\prime}}{\sigma \sqrt{n}}$ which converges in distribution to a normal r.v. with mean 0 and variance $1 / 2$.

So, $\frac{S_{n}}{\sigma \sqrt{n}}-\frac{S_{2 n}}{\sigma \sqrt{2 n}}$ converges in distribution to a normal r.v with mean 0 and variance $2-\sqrt{2}$. This means that $\frac{S_{n}}{\sigma \sqrt{n}}-\frac{S_{2 n}}{\sigma \sqrt{2 n}}$ does not converge to a constant and it might take different values with the described probability distribution.

Solution to Exercise 1.42:

a)

$$
\bar{X}=100
$$

$$
\begin{aligned}
\sigma_{X}^{2} & =\left(10^{12}-100\right)^{2} \times 10^{-10}+(100+1)^{2} \times\left(1-10^{-10}\right) / 2+(100-1)^{2} \times\left(1-10^{-10}\right) / 2 \\
& =10^{14}-2 \times 10^{4}+10^{4} \approx 10^{14} .
\end{aligned}
$$

Thus,

$$
\begin{gathered}
\bar{S}_{n}=100 n \\
\sigma_{S_{n}}^{2}=n \times 10^{14}
\end{gathered}
$$

b) This is the event that all 10^{6} trials result in ± 1. That is, there are no occurrences of 10^{12}. That is, there are no occurrences of 10^{12}. Thus, $\operatorname{Pr} S_{n} \leq 10^{6}=\left(1-10^{-10}\right)^{10^{6}}$.
c) From the union bound, the probability of one or more occurrences of the sample value 10^{12} out of 10^{6} trials is bounded by a sum over 10^{6} terms, each of which is 10^{-10}, i.e., $1-F_{S_{n}}\left(10^{6}\right) \leq 10^{-4}$.
d) Conditional on no occurrences of $10^{12}, S_{n}$ simply has a binomial distribution. We know from the central limit theorem for the binomial case that S_{n} will be approximately Gaussian with mean 0 and standard deviation 10^{3}. Since one or more occurrences of 10^{12} occur only with probability 10^{-4}, this can be neglected, so the distribution function is approximately Gaussian with 3 sigma points at $\pm 3 \times 10^{3}$.

Figure 1. Distribution function of S_{n} for $n=10^{6}$
e) First, consider the PMF $p_{B}(j)=$ of the number $B=j$ of occurrences of the value 10^{12}. We have

$$
p_{B}(j)=\binom{10^{10}}{j} q^{j}(1-q)^{10^{10}-j}
$$

where $q=10^{-10}$.

$$
\begin{gathered}
p_{B}(0)=(1-q)^{10^{10}}=\exp \left(10^{10} \ln [1-q]\right) \approx \exp \left(-10^{10} q\right)=e^{-1} \\
p_{B}(1)=10^{10} q(1-q)^{10^{10}-1}=(1-q)^{10^{10}-1} \approx e^{-1} \\
p_{B}(2)=\binom{10^{10}}{2} q^{2}(1-q)^{10^{10}-2}=\frac{10^{10} \times\left(10^{10}-1\right)}{2}\left(10^{-10}\right)^{2}\left(1-10^{-10}\right)^{10^{10}-2} \approx \frac{1}{2} e^{-1}
\end{gathered}
$$

Thus,

$$
\operatorname{Pr}(B \leq 2) \approx 2.5 e^{-1}
$$

Conditional on $\{B=j\}, S_{n}$ will be approximately Gaussian with mean $10^{12} j$ and standard deviation of 10^{5}. Thus $F_{S_{n}}(x)$ rises from 0 to e^{-1} over a range of x from about -3×10^{5} to $+3 \times 10^{5}$. It then stays virtually constant up to about $x=10^{12}-3 \times 10^{5}$. It rises to $2 e^{-1}$ by about $x=10^{12}+3 \times 10^{5}$. It stays virtually constant up to about $2 \times 10^{12}-3 \times 10^{5}$ and rises to $2.5 e^{-1}$ by about $2 \times 10^{12}+3 \times 10^{5}$. When we sketch this, the rises in $F_{S_{n}}(x)$ for $n=10^{10}$ over a width of about 6×10^{5} look essentially vertical on a
scale of 2×10^{12}, rising from 0 to e^{-1} at 0 , from $1 / e$ to $2 / e$ at 10^{12} and from $2 / e$ to $2.5 / e$ at 2×10^{12}. There are smaller steps at larger values, but they would scarcely show up on this sketch.

Figure 2. Distribution function of S_{n} for $n=10^{10}$
f) It can be seen that for this peculiar rv, S_{n} / n is not concentrated around its mean even for $n=10^{10}$ and $\left.S_{n} / \sqrt{(} n\right)$ does not look Gaussian even for $n=10^{10}$. For this particular distribution, n has to be so large that B, the number of occurrences of 10^{12}, is large, and this requires $n \gg 10^{10}$. This illustrates a common weakness of limit theorems. They say what happens as a parameter (n in this case) becomes sufficiently large, but it takes extra work to see how large that is.

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

