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6.262 Discrete Stochastic Processes 

Midterm Quiz 
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There are 5 questions, each with several parts. If any part of any question is unclear to you, 
please ask. 

The blue books are for scratch paper only. Don’t hand them in. Put your final answers in the 
white booklets and briefly explain your reasoning for every question. Please put your name 
on each white booklet you turn. 

Few questions require extensive calculations and most require very little, provided you pick the 
right tool or model in the beginning. The best approach to each problem is to first think 
carefully over what you’ve learned and decide precisely what tool fits best - before putting 
pencil to paper. 

Partial Credit 

We will give partial credit if you present your thinking in a clear way we can understand (and 
your thinking is at least partially correct), but otherwise not. If you model a problem using a tool 
that requires significant computation, it is best to first give the model explicitly and indicate how 
you will use the results of the computation to determine the final answer. This approach will 
help you receive fair credit if your computations aren’t perfect. 

Time 

You will have at least 4 hours to finish the exam, and 30 – 60 minutes more if many of you 
request a bit more time. 

Useful Tables and Formulas 

These are given on the last pages of the quiz. 
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Problem 1 (19 pts.) 


Consider the following finite-state Markov Chain. 


(5) a) Identify all the classes present in the chain and the states belonging to each class. Find 
the period of each class and determine whether the class is transient or recurrent. 

b) Let pi j n  denote the probability of the process ending up in state j in n transitions,, ( )  
conditioned on the fact that the process started in state i. In other words, 
p , n = P X  n = j X 0 = i) . Compute the value of each of the limits below, or else explain briefly 
why it does not exist. 

i j ( )  ( 

(2) i) lim p n .n→∞ 1,5 ( )  

(2) ii) lim p n .n→∞ 1,7 ( )  

(2) iii) lim p n .n→∞ 1,2 ( )  

(2) iv) lim p n .n→∞ 4,5 ( )  

(6) c) Let P = ⎣⎡ p , ⎦⎤  be the transition matrix for this chain. Find all the possible steady statei j  

vectors for this chain, i.e., find all vectors π = 1, ,K,π 7[π π 2 ] with the properties that 
π1 +π 2 +K +π 7 =1,  0 ≤ π1,K,π 7 ≤1 and πP = π . 
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Solution 

a) There are three classes present: {1, 2}, {3, 4, 5}, and {6, 7}. Class {1, 2} is transient and periodic 
with period two, while {3, 4, 5} and {6, 7} are both aperiodic and recurrent. 

b) Since the class {1, 2} is transient, we have that limn→∞ p1,2(n) = 0, as the process eventually 
gets trapped in one of the two recurrent classes. 

Since both recurrent classes are aperiodic, once the process enters a recurrent class contain
ing state i, the long-term probability of being in state i equals the corresponding steady-state 
probability πi. Considering first the class {3, 4, 5}, by symmetry in the transition probabilities, the 
long-term probability of the process being in a particular state is the same for every state in the 
class. Thus, limn→∞ p4,5(n) = 1/3. Similarly, looking at {6, 7}, the simple form of the chain 
allows us to conclude that limn→∞ p7,7(n) = 1/3. (If you don’t see it immediately, then let π6 

be the steady state probability of being in state 6 and π7 be that corresponding to state 7, where 
both are conditioned on the process starting out in the recurrent class {6, 7}. Conditioning on the 
previous transition: π6 = (1/2)π6 + π7. But also π6 + π7 = 1, and the result follows solving the 
two equations.) 

Finally, since states 1 and 2 are transient, let q1,{3,4,5} and q2,{3,4,5} denote the probabilities of 
eventually being trapped in {3, 4, 5} starting from states 1 and 2 respectively. 

q1,{3,4,5} = 
1 
3 

(1) + 
2 
3
q2,{3,4,5} 

q2,{3,4,5} = 
1 
3 

(0) + 
2 
3
q1,{3,4,5} 

It follows that 
3 2 

q1,{3,4,5} = 
5 

q2,{3,4,5} = 
5
. 

Write 
p1,5(n) = p1,5|A1,n (n)P(A1,n) + p1,5|B1,n (n)P(B1,n) + p1,5|C1,n (n)P(C1,n), 

where the events , A1,n, B1,n, C1,n are as follows: 

An,1 = {Xn ∈ {3, 4, 5} | X0 = 1}
Bn,1 = {Xn ∈ {1, 2} | X0 = 1}
Cn,1 = {Xn ∈ {6, 7} | X0 = 1} 

By our previous calculations, limn→∞ P(A1,n) = 3/5, limn→∞ P(B1,n) = 0, limn→∞ P(C1,n) = 
1 − 3/5 = 2/5. Moreover, limn→∞ p1,5|A1,n (n) = 1/3 and p1,5|C1,n (n) = 0 for all n. Thus, 
limn→∞ p1,5(n) = (1/3)(3/5) = 1/5. Similarly, limn→∞ p1,7(n) = (1/3)(2/5) = 2/15. 

To recap: 

i) limn→∞ p1,5(n) = 1/5. 

ii) limn→∞ p1,7(n) = 2/15. 

iii) limn→∞ p1,2(n) = 0. 

iv) limn→∞ p4,5(n) = 1/3. 



� 

c) Let π = [π1, π2, . . . , π7] be such that πP = π. Writing out the corresponding equations, observe 
that 

2 2 
πP = π = π1 = π2 , π2 = π1 .⇒ 

3 3
Thus, π1 = π2 = 0.


Next, that πP = π also implies that


2 1 
π3 = π4 + π53 3 

1 2 
π4 = π3 + π53 3 

1 2 
π3 = π4 + π33 3 

Let α ∈ [0, 1] be given by α = π3 + π4 + π5. It follows that π3 = π4 = π5 = α/3. (Equivalently, 
here we could have also noted that the system is under-determined, with one degree of freedom. 
Letting say x1 = α̃ for some α̃ ∈ [0, 1] would yield the same conclusion in the end.) 

Finally, that πP = π also implies that 

1 
π6 = π6 + π72 

1 
π7 = π6 2 

Let β ∈ [0, 1] be given by β = π6 + π7. It follows that π6 = 2β/3, π7 = β/3. 

Since π1 = π2 = 0, α + β = 1. Therefore, 

π = α[0, 0, 1/3, 1/3, 1/3, 0, 0] + (1 − α)[0, 0, 0, 0, 0, 2/3, 1/3] for α ∈ [0, 1]. 

Let π� = [0, 0, 1/3, 1/3, 1/3, 0, 0] and π�� = [0, 0, 1/3, 1/3, 1/3, 0, 0]. Since π�P = π� and π��P = 
π��, for any choice of α we have 

(απ� + (1 − α)π��)P = απ�P + (1 − α)π��P = αP + (1 − α)P = P. 

Moreover, any choice of α ∈ [0, 1] yields a vector π such that 0 ≤ πi ≤ 0 for i = 1, . . . , 6 and 
πi = 1. Therefore, the set of all probablity vectors π such that πP = P is given by: i 

π = α[0, 0, 1/3, 1/3, 1/3, 0, 0] + (1 − α)[0, 0, 0, 0, 0, 2/3, 1/3] for α ∈ [0, 1]




Problem 2 

Consider a car ferry that holds some integer number k of cars and carries them across a river. 
The ferry business has been good, but customers complain about the long wait for the ferry to 
fill up. The cars arrive according to a renewal process. The ferry departs immediately upon the 
arrival of the k-th customer and subsequent ferries leave immediately upon the arrival of the 
2k-th customer, the 3k-th customer, etc. 

a) The IID inter-arrival times of the cars have mean X , variance σ 2 and moment generating 
function g r( ) . Does the sequence of departure times of the ferries form a renewal process? X

Explain carefully. 

Solution: Yes, the ferry departure times form a renewal process. The reason is that the l -th 
ferry departure is immediately after the (k l )-th customer arrival. The time from the l -th to l +1 
ferry departure is the time from the (kl +1) -st to ((k +1)l) -th customer arrival, which is clearly 
independent of all previous customer arrival times and therefore of all previous ferry departure 
times. 

b) Find the expected time that a randomly chosen customer waits from arriving at the ferry 
terminal until departure of its ferry. As part of your solution, please give a reasonable definition 
of the expected waiting time for a randomly chosen customer, and please first solve this 
problem explicitly for the cases k = 1 and k = 2.  

Solution: For k = 1, the ferry leaves immediately when a customer arrives, so the expected 
waiting time for each customer is 0. For k = 2, odd numbered customers wait for the following 
even numbered customer, and even number customers don't wait at all, so the average waiting 
time over customers (which we take as the only sensible definition of expected waiting time) is 
X 2 . 

We next find the expected waiting time, averaged over customers, for the l th ferry. To simplify 
notation, we look at the first ferry. The average expected wait over the k customers is the sum 
of their expected waits divided by k. (Recall that this is true even if, as here, the waits of 
different customers are statistically dependent.) The expected wait of customer 1 is (  )− X ,k 1 

+ + +  − = k k−that of customer 2 (k − 2) X , etc. Recall (or derive) that 1 2 L (k 1) (  )  1 2  . Thus the 

expected wait per customer is ( )k −1 X 2 , which checks with the result for k = 1 and k = 2. 
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c) Is there a 'slow truck' phenomenon here ? (This the phrase we used to describe the effect of 
large variance on the term E[X2]/2E[X] in the steady state residual life or on the E[Z2] term in 
the numerator of the Pollazcek-Khinchin formula.) Give a brief intuitive explanation. 

Solution: Clearly, there is no 'slow truck' phenomenon for the ferry wait here since the answer 
depends only on k and X . The reason is most evident for k = 1, where the wait is 0. The 
arrival of a car at the ferry terminal could have delayed by an arbitrary amount by a slow truck 
in getting to the ferry terminal, but is not delayed at all in getting on the ferry, since the slow 
truck took an earlier ferry. For larger k, a vehicle could be delayed by a later arriving truck, but 
at most k - 1 vehicles could be delayed that way, while the E ⎣⎡ X 2 

⎦⎤ effect arises from the 
potentially unbounded number of customers delayed by a slow truck. 

d) In an effort to decrease waiting, the ferry managers institute a policy where the maximum 
interval between ferry departures is 1 hour. Thus a ferry leaves either when it is full or after one 
hour has elapsed, whichever comes first. Does the sequence of departure times of ferries that 
leave with a full load of cars constitute a renewal process? Explain carefully. 

Solution: Yes. When a ferry departs with a full load of k cars, the auto arrival process restarts 
immediately with the wait for the first car for the next ferry. The subsequent sequence of 
departure times of all the partially full ferries up through the departure of the next full ferry is 
independent of the arrival times of cars to the previous full ferry and before. The times at which 
each successive ferry is entered by its first customer is also a renewal process since customer 
arrivals form a renewal process. 
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Problem 3 
The use of the various laws of large numbers with random variables that take huge values with 
tiny probabilities requires careful thought. 

Except where exact answers are requested, your numerical answers need only be accurate to 

within +− 1%.) 

Consider a discrete r.v. X with the PMF 

X ( )1 (1  10  ) 2,  p − = −  −10 

pX ( )1 ( 10  )= −1 −10 2,  

1012 −10.p (  )  =10X 

a) Find the mean and variance of X. Assuming that { ; ≥ } is an IID sequence with theX m 1m

distribution of X and that S X  = + L + X for each n, find the mean and variance of S .n 1 n n 

2 12  2  −10  2 (1−10 −10 ) 2 (1 −10 −10 ) 
Solution: X =100 and σ X = (10 −100) x 10  + (100+1)  x 

2 
 + (100 -1)  x 

2 
≈ . 

1014  - 2 x 104 + 104 ≈ 1014 . 

Thus Sn =100n and S 
2 

n
n 1014  . .σ ≈ ×  

b) Sketch the distribution function of S for n =106 . (You may plot it as if it were a continuous n 

function, but use a linear scale for the x-axis.) Estimate the value of s to within +−  1% for which 

F s( ) = 3 4   and draw your sketch from -2s to 2s on the horizontal axis. Sn 

Solution: We neglect the very small probability ( about 10-4 ) of an event with probability 
10−10 occurring one or more times in 106  tosses. (A more accurate derivation will be found in 
part c, below.) With this approximation, Sn  simply has a binomial distribution, taking values +1 
and -1, each with probability ≈ ½. We know from the central limit theorem for the binomial 
case that Sn  will be approximately Gaussian with mean 0, variance 106 and standard deviation 
103 . 

5




Since one or more occurrences of 1012  occur only with probability about 10−4 , this possibility 
can be neglected, so the distribution function is approximately Gaussian with 3 sigma points at 
± × 3 103 . From the table for the unit Gaussian Φ, F x( ) = 3/ 4  when x = 0.675, so for n = 10 6 ,Φ 

FS (s)  = 3/4 when s ≈ 675. 
n 

To check for accuracy due to neglecting a probability of about10−4 , we notice that near x = 

0.75, dΦ
≈ 0.31, so an error of around 10−4  in probability would cause an error of around

dx 
(1,000) x (10−4 /.31) ≈ 0.32, a negligible fraction of 675. 

675 

c) Again for n =106 , find an exact expression for 1− F (2 x 10 6 )when n = 106 and give a simpleSn 

numerical approximation of this value (a better approximation than 0). 

Solution: For n = 106, the event { Sn ≤ 2 x 106 } is the event {no outcomes of size 1012 in 106 

independent trials}, which has a probability: 

6 -10 106

FS (2 x 10 ) = (1 - 10 ) , 
106 

which, from the approximate formulas at the end of the quiz, is approximately e-10-4 

≈ −10−41 . 
Therefore, 

6  -4  -4  1− FS (2 x 10 ) ≈  1-(1 - 10 ) =  10 . 
106 

d) Now let n =1010 . Give an exact expression for ( n ≤ 10  )P S
10 

for n = 1010, and find an 

approximate numerical value. Sketch the distribution function of Sn for n =1010 . Scale the 
horizontal axis to include the points 0 near its left end and 2 x 1012  near its right end. 
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Solution: The event {S ≤1010} for n = 1010 trials is the event {no outcomes of size 1012 in 1010 
n 

independent trials}, Consider the PMF pB ( j ) of the number B = j of occurrences of the value 

1012 . We have 

pB ( )j = 
⎛
⎜ 
1010 ⎞

⎟ p j (1− p)1010 − j where p =10−10 , 
⎝ j ⎠ 

10 10 −10 = −  
1010 

{ [ = e ,pB ( )  (  1 p) = exp 10  ln 1  − p]} ≈ exp  (−10  p) 
N N(Note that the approximation (1-ε )N ≈  1 - Nε + ( −1)  ε 2 

2

 is not good unless Nε  << 1; it gives 1/2 in this case)


pB ( )  = 10 p (1− p)1010 −1 = (1− p)10 10 −1 ≈ e−11 10  ,  

p 2 ⎜ ⎟ 
2 ) −10  2  −10  10  −2 −1 

B ( ) = ⎛1010 ⎞ 
p (1− p 

1010 −2 = 
(10 10 )(10 10 −1) (10  )  (1-10  )  

10 

≈
1 e ,


⎝ 2 ⎠ 2 2


P(B ≤ 2) ≈ 2.5e -1. 

Conditional on B = j, j = 0,  1 or 2, , Sn  will be approximately Gaussian with mean 1012 j and a 
relatively tiny standard deviation of 105 . Thus F x  rises from 0 to e−1 over a range of x fromSn

( ) 
about 3 105 to + ×  . It then stays virtually constant up to about x =1012 − ×− ×  3 105 3 105 . It rises to 
2 x e-1  by about x =1012 3 105 . It stays virtually constant up to about x = 2 1012 3 105 and+ ×  × − ×
rises to 2.5e 1 2 1012 3 105 . When we sketch this, the rises in F−  by about x = × S ( )+ ×  x over a 

1010 

width of about 6 x 105  look essentially vertical on a scale of 2 x 1012, rising from 0 to 1 e at 0, 
from 1 e to 2 e at 1012  and from 2 e to 2.5 e at 2 1012 . There are smaller steps at larger× 
values, but they would scarcely show up on this sketch. 

10 12 = E[Sn] 2 x 10 12 

( )
nSF x  

1/e 

2/e 
2.5/e 

1 

x 
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e) What is roughly (i.e., within an order of magnitude or so) the smallest value of n for  
which the central limit theorem would work well for this problem ? 

Solution: 

The plot below shows that, for this peculiar rv, S n is not concentrated around its mean evenn

for n =1010 and S n does not look Gaussian even for n = 1010 . For this particular distribution, n 

n has to be so large that B, the number of occurrences of 1012  is larger, and this requires n to 
be significantly greater than 1010. 

With n = 1011, Sn will have a mean of 1013, a variance of about 1025, and a standard deviation 
of about 3.16 x1012.This allows only 7 outcomes (i.e., 7 - 13 occurrences  of 1012 ) within 1 
standard deviation of the mean, a very modest number to consider the Gaussian fit from the 
CLT to be reasonably accurate. See figure below. 
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With n = 1012, Sn will have a mean of 1014, a variance of about 1026, and a standard deviation 
of about 1013.This allows for 21 outcomes (i.e., 90 - 110 occurrences of 1012 ) within 1 
standard deviation of the mean, a better but still modest number to consider the Gaussian fit 
from the CLT to be reasonably accurate. See figure below. 

With n = 1013, Sn would have a mean of 1015, a variance of about 1027, and a standard 
deviation of about 3.16 x1013.This allows for 63 outcomes (i.e., 969 - 1031 occurrences  of 
1012 ) within 1 standard deviation of the mean, a better number to consider the Gaussian fit 
from the CLT to be reasonably accurate. 

Thus some number in the range of n = 1011 to n = 1013 should be the smallest n that is 
adequate to accurately use the CLT. Somewhat more generally, suppose 

pX (  ) (  − = −  t ) 2,  1 1  

p 1 = −1 t 2,   where t is tiny (<< 1) and h is huge (>>1). X ( ) (  )  
p h  = t,X ( )  

Then   E[X] = ht           E[S ] = nht,n 
2 2 2 2 2σ X ≈ [h -ht]t ≈  h t,       σ Sn 

≈  nh t,

σ X ≈ h t σ Sn 
≈ h nt  , 

For the CLT to work well, we need E[# huge outcomes] = nt >> 1 & 

the total distinct number of huge outcomes within 1 σ Sn 
of   E[S ] = 

2σ Sn 

h ≈ 2 nt >> 1.n 

The latter condition determines the r equirement on n. 

This problem illustrates a common weakness of limit theorems. They say what happens as a 
parameter (n in this case) becomes sufficiently large, but it takes extra work to see what values 
of n satisfy that criterion. 
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Problem 4 (20 pts) 

A certain physical object emits three types of particles: negative-spin particles, positive-spin 
particles of type A and positive-spin particles of type B. A processing device records the times 
and the types of particle arrivals at the sensor. 

Considering only the particle types (i.e. negative, positive A, positive B), the corresponding 
arrival process can be modeled as a finite-state Markov chain shown below, where State 1 is 
associated with a negative-spin particle, State 2 with a positive-spin particle of type A and 
State 3 with a positive-spin particle of type B. For example, after recording a negative-spin 
particle, the next arrival at the sensor will be a positive-spin type A arrival with probability q or a 
positive-spin type B arrival with probability 1-q. Suppose that p ∈(0,1 2 ,) q ∈ (0,1/ 2). . 

negative spin 

positive-spin B positive-spin A 

a) Let us consider several possible processes arising from the above setup. 

(4) i) Do the arrivals in time of positive-spin particles of type A form a renewal process? A 
delayed renewal process? 

(4) ii) Do the arrivals in time of positive-spin particles form a renewal process? 
A delayed renewal process? 

(4) iii) Does the discrete-time process that records the spin orientations (i.e  positive vs. 
negative) of the incoming particles form a Bernoulli process? 

(4) iv) Does the discrete-time process that records the types (A vs. B) of incoming positive-spin 
particles form a Bernoulli process? 

(4) b) Starting from State 1, let M1  denote the number of transitions until the chain returns to 
State 1. Find E (M1 ) as well as the probability mass function of M1 . 
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Solution 

a) We are asked to consider several types of discrete stochastic processes. (That the processes are 
discrete was made additionally explicit during the exam.) 

i) The arrivals of type-A particles are given by arrivals to a recurrent state (state 2) of a finite-
state Markov chain with a single recurrent class. Regardless of the starting state, the process 
will therefore eventually visit state 2 and return to it infinitely often with probability 1. There
fore, the first arrival epoch and the subsequent inter-arrival times (in terms of the numbers 
of transitions) of the type-A particles are finite with probability 1. Moreover, by the Markov 
property, the inter-arrival times form an IID sequence, with the possible exception of the first 
arrival which need not have the same distribution as the others. Therefore, conditioned on 

1 +

1-p

1
p

the chain starting in state 2, the process is a renewal process; otherwise, it is a delayed 
renewal process. 

ii) Here, we don’t need to distinguish between states 2 and 3. Conveniently, the probability of 
accessing state 1 is the same from state 2 as from state 3. Therefore, as far as counting the 
number of particles between successive positive-spin particles is concerned, the process 
is probabilistically equivalent to the one illustrated below where states 2 and 3 have been 
merged into a single state and the hops between the two are modeled as a self-transition. 
(Note that symmetry was crucial for this equivalence.) 

Since the “+" state is recurrent and belongs to a chain with a single recurrent class, ar
guments analogous to those of a) yield that the positive particles form a renewal process 
conditioned on the first particle being either positive A or positive B, or a delayed renewal 
process conditioned on the first particle being negative. 

iii) Given an arrival of a negative particle, the next particle is positive with probability 1. The 
process is therefore not Bernoulli (i.e. cannot be modeled as a sequence of coin tosses). 

iv) Given an arrival of a positive-spin particle of type A, the probability of the next positive 
particle being of type B is p + (1 − p)(1 − q). On the other hand, conditioned on an arrival 
of a particle of type B, the probability that the next particle is of type B is (1 − p)(1 − q). In 
a Bernoulli process, the probability that the next particle comes out B cannot depend on the 
previous particle. The two probabilities are equal only for p = 0, which falls outside of the 
range given. Therefore, the process is not Bernoulli. (We apologize for the hint, it should 
have asked you to consider the range of p and q.) 

b) Notice once again that due to symmetry, merging the positive-spin states as previously does not 
change the distribution of the number of transitions needed for the chain to return to state 1. 
The number of transitions from state “+” to 1 is given by a geometric random variable with mean 
1/(1 − p). Thus, 

1
P(M1 = m) = (1 − p)p m−2 ∀m = 2, 3, . . . and E(M1) = 

1 − p 
+ 1. 

(Note that the added 1 includes the transition from state 1 to state “+".) 



 

E[W1] = 1 .μ 

Problem 5 

Consider a first-come, first serve M/M/1 queue with a customer arrival rate λ and a service 
rate μ , i.e., 

( k > τ ) = e−μτ , τ ≥ 0,P T  

where Tk  is the service time for the k-th customer. Assume the queue is empty at t = 0, i.e., no 
customer is in the queue or in service at t = 0.  

a) Find the expected total wait in queue plus service for the first customer. (No derivation or 
explanation required.) 

Solution: Let Wn be the total wait in queue plus service of the nth customer The first customer 
enters an empty system and goes immediately into service, with expected service time of  

b) Find the expected total wait in queue plus service for the second customer. (Please give 
complete calculation and briefly explain your reasoning.) 

Solution: The second customer either encounters an empty system or else a system with one 
customer ahead of her in service. Therefore  

E[W2] = E[W2 | system empty when cust. #2 arrives] P(system empty when  

     cust. #2 arrives)  

+

 E[W2 | cust. #1 in service when cust. #2 arrives] P(cust. #1 in    


     service when cust. #2 arrives)            = 


(since exponential service time is memoryless) 

( 1μ )] P(system empty when cust. #2 arrives) + ( 2
μ)  P(cust. #1 in  

        service when cust. #2 arrives). 

To find the probabilities, begin at the arrival time of cust. #1 and split a Poisson process with 
rate (  + ) to model the arrival of cust. #2 and one withλ μ into two processes, one with rate λ
rate μ  to model the service completion time of cust. #1. The probability that cust. #2 arrives 
before cust. #1 has finished service is then 
( /λ λ μ+ ), and therefore 

                E[W2] = ( 1
μ μ λ μ), μ) ( /λ λ μ+ ) = 

μ
2λ +

+
μ .) ( /  +  + ( 2 

(λ μ) 
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For the customer arrival process with rate λ, consider the age Z(t) of the interarrival interval at 
any time t ≥ 0. (The questions below apply equally well to any Poisson process with rate λ 
starting at t =0.) The first interarrival interval starts to t=0. 

c) Find the expected age E[Z(0)] and find (or recall) lim E Z t  .[ ( )]  (No explanation required.) 
t→∞

Solution: Z(0) = 0 surely, so E[Z(0)] = 0. 
2 1 

t→∞ 
E Z t  

2
X 
X 

2 (X)  2

2X 

+ σ 2 

= 
( 1
λ)2

2 
+ 1 

λ =
λ 

,And lim [ ( )]  = = X 

λ 
i.e., in steady state the Poisson process looks identical in forward or backward time.  

d) Find the expected age E[Z(t)], t  (You can derive this from your answer to part e), or ∀ ≥  0.
you can solve part d) separately. Please give a complete calculation and briefly explain your 
reasoning.) 

Solution: Proceeding without first finding the distribution of Z(t), we have  

∞ 

E Z t  [ ( )] = ∑ [ ( ) |  n arrivals happen in [0,t)] P(n arrivals happen in [0,t)) =E Z t  ⋅ 
n=0 

λ λ∑
∞ 

[ ( ) |  n arrivals happen in [0,t)] ⋅ e- t ( )t n 

E Z t  .

n=0 n!


If n > 0 arrivals occur in {0,t}, then for a Poisson process they are uniformly and independently 
distributed in [0,t], so 

E Z t  1 (n+1).[ ( ) |  n arrivals happen in [0,t)] = E[S |N(t) = n] = t 

Therefore, since 

[ ( ) |  0 arrivals happen in [0,t)]  = t = t
(n+1) ,E Z t  

∞ 

[ ( )] = ∑ [ ( ) |  n arrivals happen in [0,t)] P(n arrivals happen in [0,t)) =E Z t  E Z t  ⋅ 
n=0 

∑
∞ t 

⋅ e- tλ λt 
= te- t  ∑

∞ ( )λt n 

= te λ ∑
∞ λt n 

= 
te  - t  

∑
∞ λ n+1 

=
( )n 

λ - t  ( )  λ ( )t 
n=0 n +1 n! n=0 (n +1) n! n=0 (n +1)! λt n=0 (n +1)! 

λ - tte- tλ 

∑
∞ (λt)n 

= te- t  

(e λt −1) = 
1-e λ 

.

λt n=1 ( )!  n λt λ


e) Find FZ t( ) ( ), ∀ ≥  0, ∀ z ∈  [0,t].  (Please give a complete calculation and briefly explain z t 
your reasoning.) 
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Solution:        P(Z(t) = t) = P(no arrivals in [0, t]) = e-λt. 

Approach #1 : For z < t, {Z(t) > z} ⇔ {no arrivals in [t-z, t]} 

P(no arrivals in [t-z, t]}) = e –λz 

λ⎧1 - e- z ,  0 ≤  z < t
 so  P (Z(t) ≤ z) = ⎨ 

⎩ 1 , z ≥ t 

Approach #2 : 

P(0 ≤  z < Z(t)  < t) = P(all n > 0 arrivals in [0,t] are earlier than t-z) = 
∞ n ∞ nt z n −λ λ λ − −λz −λt∑ ( − 

t 
) e t ( )  

n
t 
! 

= e−λt∑ (t z  − )n ( )  
n! 

= e−λt (eλ (t z  ) −1)  = (e - e ).  
n=1 n=1 

     Therefore, for z < t, 

F ( ) ( ) = P Z t  ≤  z) = 1 - P(0 ≤  z < Z(t)  < t) - P(Z(t) = t) = z ( ( )Z t  

λ −λ λ λ1 - (e− z - e t ) - e− t  = 1 - e - z , 

and, for z = t, 

Z t( ) ( )t = (  ( )  ≤ t)  = 1,  F  P Z t  

i.e., 

λ 

FZ t( ) ( )  = 
⎧
⎨ 
1 - e - z ,  0 ≤  z < t 

z 
⎩ 1  , z ≥ t. 

Checking our answer to part d), 

∞ t t t - t1-e  λ 

E Z t = ∫ (1 - F Z t( ) ( ))  = ∫ (1 - F ( )  z dz = ∫ e dz = -( 
λ 

)e[ ( )] z dz Z t  ( )) −λz 1 −λz =  (!!!). 
λz=00 0 0 
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Possibly Useful Formula

 For a large integer N and small ε, (i.e., N >> 1 and 0 < ε << 1), 

(1 − ε )N ≈ e− Nε


which also approximately equals, if Nε  << 1 as well,


−N ( N 1) 21 − Nε + ε + − − − 

2 
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