
6.262: Discrete Stochastic Processes 2/2/11

Lecture 1: Introduction and Probability review

Outline:

• Probability in the real world

• Probability as a branch of mathematics

• Discrete stochastic processes

• Processes to be studied

• When, where, and how is this useful?

• The axioms of probability theory

• Independent events and experiments

• Random variables
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Probability in the real world

Games of chance started in ancient civilizations.
Along with a propensity to gamble, people have an
intuitive sense of likelihood and average behavior.

Games of chance are essentially repeatable, and ex-
perimental verification of likelihoods is essentially
possible.

Most of life’s decisions involve uncertainty. Wise
people learn to associate some sense of likelihood
with uncertain possibilities.

Probability is most useful when repeatability under
essentially the same conditions occurs.
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Essentially – essentially – essentially ??? In trying

to be precise, many problems emerge.

In flipping a coin, the outcome depends on initial

velocity and orientation, the coin surfaces, and the

ground surface. Nothing is random here. Subse-

quent tosses are also related through the coin and

the flipper.

Important questions involving uncertainty are far

harder to make sense of. What is the probability

of another catastrophic oil spill in the coming year?

What is the probability that Google stock will dou-

ble in 5 years?
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Probability as a branch of mathematics

Despite discomfort with what probability ‘means,’
people have felt comfortable using combinatorics
and symmetry to create probabilities for events in
all areas of science and life.

Going one step further, standard models are cre-
ated where events have probabilities and there are
sensible rules for working with these probabilities.

Students are given a well-specified model and calcu-
late various quantities. Heads and tails are equiprob-
able and subsequent tosses are ‘independent.’

Everyone is happy. Students compute; professors
write papers; business and government leaders ob-
tain questionable models and data on which they
can blame failures.
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The use of probability models has 2 major problems:

First, how do you make a probability model for a
real world problem?

Partial answer: Learn about estimation and deci-
sions within standard models. Then learn a great
deal about the real-world problem. Then use com-
mon sense and tread lightly.

Better answer: Try oversimplified models first. Use
the mathematics of those simple models to help un-
derstand the real problem. Then in multiple stages,
add to and modify the models to understand the
original problem better.

Usually no model is perfect (look at coin tossing).

Alfred North Whitehead: Seek simplicity and dis-
trust it.
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Second problem: How do you make a probability
model that has no hidden paradoxes?

Everyone’s answer: Follow Kolmogorov’s axioms of
probability.

Kolmogorov did this in 1933, finally putting proba-
bility on a firm mathematical foundation and open-
ing the field to steady progress.

These axioms essentially say that probability theory
is a branch of measure theory.

These axioms are needed here to avoid paradoxes,
but for the topics treated, measure theory is not
needed and will not be used.
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Discrete stochastic processes

A stochastic process is a special type of probability
model in which the sample points represent func-
tions in time.

It often can be viewed as a sequence of random
variables evolving in time. Often there is a contin-
uum of random variables, one for each real valued
instant of time.

A discrete stochastic process is a stochastic process
where either the random variables are discrete in
time or the set of possible sample values is discrete.

It is not important to define which stochastic pro-
cesses are discrete precisely.
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Processes to be studied

Counting processes — Each sample point is a se-
quence of ‘arrival’ times. Special cases are Poisson
processes (chap. 2) and Renewal processes (chap.
4).

Markov processes — The future state depends on
the past only through the present. Special cases are
Finite Markov chains (chap. 3), countable Markov
chains (chap. 5) and Markov processes with count-
able state spaces (chap. 6).

Random Walks and martingales (chap. 7)

We will study various mixtures of these, particularly
standard models for many applications. See table
of contents (or text itself) for more detail.
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When, where, and how is this useful?

Broad answer: Probability and stochastic processes

are an important adjunct to rational thought about

all human and scientific endeavor.

Narrow answer: Probability and stochastic processes

are essential components of the following areas:

Communication systems and networks; computer

systems; Queueing in all areas; risk management

in all areas; catastrophe management; failures in

all types of systems; operations research; biology;

medicine; optical systems; control systems; etc.
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The axioms of probability theory

Probability models have 3 components: a sample
space Ω, which is an arbitrary set of sample points;
a collection of events, each of which is a subset
of Ω; and a probability measure, which assigns a
probability (a number in [0, 1]) to each event. The
collection of events satisfies the following axioms:

1. Ω is an event.

2. If A1, A2, . . . , are events, then
⋃∞

=1 A isn n an event.

3. If A is an event, the complement Ac is an event.

Not all subsets need be events. Usually each sam-
ple point is taken to be a singleton event. Then
non-events are weird, often necessary, but usually
ignorable.
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The empty set φ is Ωc, so is an event.

If all sample points are singleton events, then all

finite and countable sets are events (i.e., they are

finite and countable unions of singleton sets).

From deMorgan’s law,

c cAn = An.
n n

so countable intersections

[⋃ ]

of

⋂

events are events. All

combinations of intersections and unions of events

are also events.
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The probability measure on events satisfies the fol-
lowing axioms:

1. Pr{Ω} = 1.

2. If A is an event, then Pr{A} ≥ 0.

3. If A1, A2, . . . are disjoint events, then

Pr
{ ⋃ m

Pr
n

∑∞∞
Ann=1

}
=

=1
{An} = lim

m→∞
n

∑
Pr

=1
{An}

It’s surprising that this is all that is needed to avoid
paradoxes. A few simple consequences are

Pr{φ} = 0

Pr{ cA } = 1−Pr{A}
Pr{A} ≤ Pr{B} ≤ 1 for A ⊆ B
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Another consequence is the union bound,

Pr
{⋃

Ann

}
≤

∑
Pr

n
{An} ; finite or countable n

A1

A2Ac
1

A2A1

A1
⋃

A2 = A1
⋃

A2Ac
1

Pr{A1
⋃

A2} = Pr{A1}+ Pr{A2Ac
1}

≤ Pr{A1}+ Pr{A2}

These axioms probably look ho-hum, and we ignore

them much of the time. They are often needed for

infinite sums and limits.

As in elementary probability courses, we emphasize

random variables and expectations. The axioms,

however, say that events and probabilities of events

are the fundamental quantities.
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Independent events and experiments

Two events A1 and A2 are independent if Pr{A1A2} =
Pr{A1}Pr{A2}.

Given two probability models, a combined model
can be defined in which, first, the sample space
Ω is the Cartesian product Ω1 × Ω2, and, second,
for every event A in model 1 and B in model 2,
Pr{AB} = Pr{A}Pr{B}.

The two original models are then said to be inde-
pendent in the combined model. We won’t try to
develop notation for this.

If the axioms are satisfied in each separately, they
can be satisfied in the combined model, so complex
models can be formed from simpler models.
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Random variables (rv’s)

Def: A rv X (or X(ω)) is a function from Ω to

R. This function must satisfy the constraint that

{ω : X(ω) ≤ a)} is an event for all a ∈ R. Also, if

X1, X2, . . . Xn are each rv’s, then {ω : X1(ω) ≤ a1; . . . , Xn(ω) ≤
an} is an event for all a1, . . . , an each in R.

Every rv X has a distribution function FX(x) = Pr{X ≤ x}.
It’s a non-decreasing function from 0 to 1.

! !
1

0

FX(x)
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If X maps only into a finite or countable set of val-
ues, it is discrete and has a probability mass function
(PMF) where pX(x) = Pr{X = x}.

If dFX(x)/dx exists and is finite for all x, then X is
continuous and has a density, fX(x) = dFX(x)/dx.

If X has discrete and continuous components, it’s
sometimes useful to view it as a density with im-
pulses.

In general, FX(x) = Pr{X ≤ x} always exists. Be-
cause X = x is included in X ≤ x, we see that if
FX(x) has a jump at x, then FX(x) is the value at
the top of the jump.
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Theoretical nit-pick: FX(x) must be continuous from
the right, i.e., limk F (→∞ X x + 1/k) = FX(x).

This seems obvious, since for a discontinuity at x,
FX(x) is the value at the top (right) of the jump.

Proof: Let Ak = { : 1ω X(ω) > x + .k} Then Ak−1 ⊆ Ak
for each k > 1.

{ω : X(ω) > x} =
⋃∞

Akk=1

Pr{X > x} = Pr
{⋃ 1

Ak

}
= limPr

k k
{Ak} = limPr

k

{
X > x +

k

}

Center step: let B1 = A1; Bk = Ak−Ak−1 for k > 1.
Then {B

{
k; k ≥ 1} are disjoint.

Pr
⋃

Ak

}
= Pr

{⋃
Bk

}
=

∑∞
Pr{Bkk k k=1

}

= lim m
k

∑k
B = lim A

m=1 k→∞ k→∞
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