
6.262: Discrete Stochastic Processes 3/7/11

Lecture 10: Renewals and the SLLN

Outline:

• Arrival processes and renewal processes

• Convergence WP1 and the SLLN

• Proof of convergence WP1 theorem

• The strong law with a 4th moment

• SLLN and WLLN

• Strange aspects of the SLLN
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Renewal processes

Recall that an arrival process can be specified by it

arrival epochs, {S1, S2, . . . , }, or by its interarrival in-

tervals, {X1, X2, . . . , }, or its counting process, {N(t); t >

0}.
!
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Def: A renewal process is an arrival process for

which the interarrival intervals X1, X2, . . . are IID.
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Renewal proceesses are characterized by ‘starting

over’ at each renewal.

We will see later exactly what this means, but in-

tuititively it means that complex processes can be

broken into discrete time intervals.

Renewal theory treats the gross characteristics of

this (how many intervals occur per unit time, laws

of large numbers about long term behavior, etc.)

The local characteristics can then be studied with-

out worrying about long term interactions.
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Example: Markov chains, for any given recurrent
state, have renewals on successive visits to that
state.

It is almost obvious that the intervals between visits
to a given recurrent state are independent, but we
look at this carefully later.

A non-obvious result that will arise from studying
renewals is that the expected recurrence time be-
tween visits to state i is πi. We could have derived
that from Markov chains directly, but using renewals
is cleaner.

The whole theory for Markov chains with a count-
ably infinite state space will come from renewal pro-
cesses.
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Example: G/G/m queues (queues with a general

IID interarrival distribution, a general IID service

interval, and m servers)

The queue is assumed empty at t < 0 and an arrival

is assumed at t = 0.

A very complicated interaction goes on between ar-

rivals and departures, until finally the queue empties

out.

After some interval depending on this busy period, a

new arrival occurs. This can be taken as a renewal.
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Proof of theorem on convergence WP1

Thm: let {Yn; n ≥ 1} be rv’s satisfying ∞
n=1 E [|Yn| <∞].

Then {Yn;n ≥ 1} converges to 0 WP1.

∑

That is, we want to prove that {ω ∈ Ω : limn→∞ Yn(ω) =
0} = 1.

Proof: For any α > 0 and any finite integer m ≥ 1,
Markov says that

E
Y

n

∑m
Pr





=1

| n| > α




 ≤

[∑m
n=1 |Yn|

]
m

=
α

∑
n=1 E [|Yn|]

α
∞

≤ n=1 E [|Yn|]
.

α

∑
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m
Pr

{∑
n=1

|Yn| > α
}
≤

∑∞
n=1 E [|Yn|]

.
α

Let Am = {ω :
∑m

n=1 |Yn(ω)| > α}, so that

Pr
{∑m

n=1
|Yn| > α

}
= Pr{ =1

m} ≤
∑∞ ]n E [|Yn

A
|

. (1)
α

Since |Yn(ω)| ≥ 0, we have Am ⊆ Am+1 for m ≥ 1.
Thus the left side of (1), as a function of m, is a
nondecreasing bounded sequence of real numbers.
Thus

lim Pr
m→∞

{∑m

n=1
|Yn| > α

}
≤

∑∞ ]
= lim Pr

m→∞ {Am} n=1 E [|Yn|
.

α
Also, by property (9) (nesting) of the probability
axioms,

Pr
{⋃∞

Amm=1

}
= lim Pr

m→∞ {Am}
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Summarizing, Am = {ω :
∑m |Yn(ω)| > α} andn=1

Pr
{⋃∞

Amm=1

}
≤

∑∞
n=1 E [|Yn|]

.

For given ω,
∑

α
m |Yn(ω) isn=1 | a sequence (in m) of real

numbers that is nondecreasing in m. Either all these
real numbers are upper bounded by α, in which case

∑∞
Yn(ω) α; ω /

∞
Am

∑
n=1

| | ≤ ∈
m=1

or m )=1 |Yn(ω | > α for some m, andn

⋃

∑∞ |Yn(ω)| > α; ω
∞

n=1
∈

⋃
Amm=1

Thus

Pr


 ∞

ω :
∑ ∞ [ ]|Y n=1 E Yn

n(ω)
n=1

| > α


 | |
≤

∑
.

α 
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For α >
∑

n E [|Yn|]

 ∑∞ 

 ∑∞
=1 E [|Yn|]

Prω : >
=1

|Y | ≤ α
n

 − n
n(ω) 1 .

α

If
∑

n |Yn(ω)| ≤ α for a given ω, then
∑

n |Yn(ω)| con-

verges and limm→∞
∑∞

n=m |Yn(ω)| = 0. Thus

Pr




ω :
n


∑∞


=1

|Yn(ω)| ≤ α


 =⇒ lim
n→∞ |Yn(ω)| = 0

Pr
{ ∞
ω : lim

n→∞ |Yn(ω)| = 0
}

> 1−
∑

n=1 E [|Yn|]
.

α

Let α →∞. Then Pr{ω : limn→∞ |Yn(ω)| = 0} = 1.
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Example: (convergence in probability but not WP1).
{Yn;n ≥ 1}. For each j ≥ 0, Yn = 1 for an equiproba-
ble choice of n ∈ [5j,5j+1) and Yn = 0 otherwise.

" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "

Y3 = 1 Y16 = 1

" " " " " " " " " " " " " " " " " " "

1

1 5 25
" " " "

For every ω, j, Yn(ω) is 1 for some n ∈ [5j, 5j+1) and
is 0 elsewhere. Thus Yn(ω) does not converge for
any ω; i.e., {Yn; n ≥ 1} doesn’t converge WP1.

Note∑that E [|Yn|] = 1/(5j+1−5j) for 5j ≤ n < 5j+1 and
thus n E [|Yn|] =∞, so the theorem doesn’t apply.

However, limn→∞Pr{|Yn| > ε} = 0 for all ε > 0, so
{Yn; n ≥ 1} converges in probability.
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The strong law of large numbers

Now that we have a convenient property implying
convergence WP1, we use this property to prove
the strong law of large numbers.

Theorem: Let {Xn; n ≥ 1} be a sequence of IID
rv’s∑ satisfying E [|X|] < ∞. For each n ≥ 1, let Sn =
∞
m=1 Xn. Then

Pr

{
S )

ω ∈ Ω : n(ω
lim

n→∞ =
n

X

}

= 1

This is stated more tersely as Pr
{
limn Sn/n = X

}
= 1,

more tersely yet as limn Sn/n = X WP1 and still
WP1more tersely as Sn/n −→ X. The meaning of the

theorem is complicated and the terse forms some-
times conceal this meaning.
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Discussion: The strong law (and convergence WP1)
is quite different from the other forms of conver-
gence. It focusses directly on sample paths from
n = 1 to ∞.

This makes it more difficult to talk about the rate
of convergence as n→∞.

It is connected directly to the standard notion of
convergence of a sequence of numbers applied to
the sample paths. The power of this will be more
apparent when looking at renewal processes.

Most of the heavy lifting with the SLLN has been
done via the analysis of convergence WP1.
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Proof of SLLN assuming X = 0 and E
[

4X
]

<∞:

E
[

4Sn

]
= E


n

i
i

∑n


=1

   
n

X

  

n n n

  X X
j

∑
j 

k
=1 k=1

n


∑

 
%

∑n
X%

=1



=
∑ ∑ ∑ ∑

E
[
XiXjXkX%

i=1 j=1 k=1 %=1

]
,

Consider any given term with i = 1 and j, k, % > 1.

Note that X1 (the first rv of the n-tuple (X1, . . . , Xn))
is independent of X , X , X for each j, k, % > 1.

Thus E
[

j k %

X1XjXkX%

]
= 0 for terms with j, k, % > 1.

Similarly, all terms in which any one of i, j, k, % is
different from the rest is 0.

There are then two kinds of nonzero terms.
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In the first, there are n terms (one for each of the
n choices for i) in which i = j = k = %.

For the second kind of nonzero term, there are n(n−
1) terms for which i = j and k = %. There are also
n(n−1) terms with i = k and j = %, and n(n−1) more
with i = % and j = k.

[
4 4E Sn

]
= nE

[
X

]
+ 3n(n− 1)(E

[
2X
]
)2

Now E 4X is the second moment of the rv 2

2
]

X , so

(E
[
X )

[

2

]

≤ E
[

4X
]
. Thus

E
[

4Sn

]
= [n + 3n(n− 1)]E

[
4X
]
≤ 3 2n E

[
4X
]

∑∞ E

n=1

[
4Sn

]
1

n

∑∞
3

n4 ≤ E
[

4X
]

=1
<

n2 ∞
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From the theorem on convergence WP1,

Pr
{
ω : lim 4( 4Sn ω)/n = 0 = 1

n→∞

For every 4ω such that lim 4
n→∞ S

}

n(ω)/n = 0, we see

that limn→∞ |Sn/n| = 0. Thus,

Pr

{
Sn(ω)

ω : lim
n→∞ = 0

n

}

= 1

The ability to go, on a sample path basis, from

{ 4Sn(ω) 4/n ; n ≥ 1} to {|Sn(ω)/n|; n ≥ 1} is the key to

much of the usefulness of the strong law.
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Example: Consider the Bernoulli process with pX(1) =
p. Then E [X] = p and, according to the theorem,
the set of sample paths {ω : limn Sn/n = p} has prob-
ability 1.

Consider another Bernoulli process with pX(1) =
p′ = p. Now Pr{ω : limn Sn/n = p} = 0 and, with no
change of events, Pr

{
ω : limn Sn/n = p′

}
= 1.

There are uncountably many choices for p, so there
are uncountably many events, each of probability 1
for its own p.

This partitions the sample space into an uncount-
able collection of events, each with probability 1 for
its own p, plus events with no convergence.

There is nothing wrong here, but these events are
peculiar and must be treated carefully.

*
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