6.262: Discrete Stochastic Processes 3/9/11

Lecture 11 : Renewals: strong law and rewards

Outline:

- Review of convergence WP1
- Review of SLLN
- The strong law for renewal processes
- Central limit theorem (CLT) for Renewals
- Time average residual life

1

Theorem 1: let $\{Y_n; n \ge 1\}$ be rv's satisfying $\sum_{n=1}^{\infty} E[|Y_n|] < \infty$. Then $\Pr\{\omega : \lim_{n \to \infty} Y_n(\omega) = 0\} = 1$. (conv. WP1)

Note 1:

$$\lim_{m \to \infty} \sum_{n=1}^{m} \mathsf{E}\left[|Y_n|\right] = \sum_{n=1}^{\infty} \mathsf{E}\left[|Y_n|\right] < \infty$$

means that the limit exists, and thus that

$$\lim_{m \to \infty} \sum_{n=m}^{\infty} \mathsf{E}\left[|Y_n|\right] = 0 \tag{1}$$

This is a stronger requirement than $\lim_{n \to \infty} E[|Y_n|] = 0$.

The requirement $\lim_{n \to \infty} \mathbb{E}[|Y_n|] = 0$ implies that $\{Y_n; n \ge 1\}$ converges to 0 in probability (see problem set).

The stronger requirement in (1) lets us say something about entire sample paths.

Review of SLLN

Note 2: The usefulness of Theorem 1 depends on how the rv's Y_1, Y_2, \ldots are chosen.

For SLLN (assuming $\overline{X} = 0$ and $E[X^4] < \infty$), we chose $Y_n = S_n^4/n^4$ where $S_n = X_1 + \cdots + X_n$. Since $E[S_n^4] \sim n^2$, we saw that $\sum_n E[S_n^4]/n^4 < \infty$. Thus $Pr\{\lim_{n\to\infty} S_n^4/n^4 = 0\} = 1$.

If $S_n^4(\omega)/n^4 = a_n$, then $|S_n(\omega)|/n = a_n^{1/4}$. If $\lim_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} a_n^{1/4} = 0$. Thus $\Pr\{\lim_{n\to\infty} S_n/n = 0\} = 1$.

This is the SLLN for $\overline{X} = 0$ and $E[X^4] < \infty$.

<u></u>
~
•
-

This all becomes slightly more general if $\{Z_n; n \ge 1\}$ is said to converge to a constant α WP1 if $Pr\{\lim_{n\to\infty} Z_n(\omega) = \alpha\} = 1.$

Note that $\{Z_n; n \ge 1\}$ converges to α if and only if $\{Z_n - \alpha; n \ge 1\}$ converges to 0.

Similarly, if $\{X_n; n \ge 1\}$ is an IID sequence with $\overline{X} = \alpha$, then $\{X_n - \alpha; n \ge 1\}$ is IID with mean 0.

For renewal processes, the inter renewal intervals are positive, so it is more convenient to leave the mean in.

The strong law for renewal processes

A major factor in making the SLLN and convergence WP1 easy to work with was illustrated in going from S_n^4/n^4 to $|S_n|/n$ above.

The following theorem generalizes this.

Theorem 2: Assume that $\{Z_n; n \ge 1\}$ converges to α WP1 and assume that f(x) is a real valued function of a real variable that is continuous at $x = \alpha$. Then $\{f(Z_n); n \ge 1\}$ converges WP1 to $f(\alpha)$.

Example 1: If $f(x) = x + \beta$ for some constant β , and Z_n converges to α , then $U_n = Z_n + \beta$ converges to $\alpha + \beta$, corresponding to a trivial change of mean.

Example 2: If $f(x) = x^{1/4}$ for $x \ge 0$, and $Z_n \ge 0$ converges to 0 WP1, then $f(Z_n)$ converges to f(0).

_	
h	
<u> </u>	

Thm: $\lim_{n} Z_n = \alpha$ WP1 and f(x) continuous at α implies $\lim_{n} f(Z_n) = f(\alpha)$ WP1.

Pf: For each ω such that $\lim_n Z_n(\omega) = \alpha$, we use the result for a sequence of numbers that says $\lim_n f(Z_n(\omega)) = f(\alpha)$.

For renewal processes, each inter-renewal interval X_i is positive and (assuming that E[X] exists), E[X] > 0 (see Exercise 4.2a). Thus $E[S_n/n] > 0$.

The SLLN then applies, and

 $\Pr\Big\{\omega: \lim_{n\to\infty}S_n(\omega)/n=\overline{X}\Big\}=1.$ Using f(x)=1/x,

$$\Pr\left\{\omega: \lim_{n \to \infty} \frac{n}{S_n(\omega)} = \frac{1}{\overline{X}}\right\} = 1.$$

$$\Pr\left\{\omega: \lim_{n \to \infty} \frac{n}{S_n(\omega)} = \frac{1}{\overline{X}}\right\} = 1.$$

This implies the strong law for renewal processes: Theorem 3: (strong law for renewal processes) For a renewal process with $\overline{X} < \infty$,

Note that $N(t)/t \leq N(t)/S_{N(t)}$, and that $N(t)/S_{N(t)}$ goes through the same set of values as n/S_n

Note that $N(t)/t \leq N(t)/S_{N(t)}$, and that $N(t)/S_{N(t)}$ goes through the same set of values as n/S_n , i.e.,

$$\lim_{t \to \infty} \frac{N(t)}{S_{N(t)}} = \lim_{n \to \infty} \frac{n}{S_n} = \frac{1}{\overline{X}} \qquad \text{WP1}$$

This assumes that $\lim_{t\to\infty} N(t) = \infty$ WP1, which is demonstrated in the text.

7

Note that $N(t)/t \ge N(t)/S_{N(t)+1}$, and that $N(t)/S_{N(t)+1}$ goes through the same set of values as $n/(S_{n+1})$, i.e.,

$$\lim_{t \to \infty} \frac{N(t)}{S_{N(t)+1}} = \lim_{n \to \infty} \frac{n}{S_{n+1}}$$
$$= \lim_{n \to \infty} \frac{n+1}{S_{n+1}} \frac{n}{n+1} = \frac{1}{\overline{X}} \qquad \text{WP1}$$

Since N(t)/t is between these two quantities with the same limit, $\lim_n N(t)/t = 1/\overline{X}$ WP1.

10

9

This is the CLT for renewal processes. N(t) tends to Gaussian with mean t/\overline{X} and s.d. $\sigma\sqrt{t} \ \overline{X}^{-3/2}$.

11

Time-average Residual life

Def: The residual life Y(t) of a renewal process at time t is the remaining time until the next renewal, i.e., $Y(t) = S_{N(t)+1} - t$.

It's how long you have to wait for a bus (if bus arrivals were renewal processes).

We can view residual life as a reward function on a renewal process. The sample reward at t is a function of the sample path of renewals.

The residual life, as a function of t, is a random process, and we can look at its time-average value, $\left[\int_0^t Y(\tau) d\tau\right]/t$.

Note that a residual-life sample function is a sequence of isosceles triangles, one starting at each arrival epoch. The time average for a given sample function is

$$\frac{1}{t} \int_0^t y(\tau) d\tau = \frac{1}{2t} \sum_{i=1}^{n(t)} x_i^2 + \frac{1}{t} \int_{\tau=s_{n(t)}}^t y(\tau) d\tau$$

1	2
т	3

Time average residual life $\overline{Y}_{ta} = \frac{\mathsf{E}[X^2]}{2\mathsf{E}[X]}$.

If X is almost deterministic, $\overline{Y}_{ta} \approx \mathsf{E}[X]/2$.

If X exponential, $\overline{Y}_{ta} = \mathsf{E}[X]$.

The expected duration between long intervals is \approx 1.

15

6.262 Discrete Stochastic Processes Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.