6.262: Discrete Stochastic Processes 3/14/11

Lecture 12 : Renewal rewards, stopping trials, and Wald's equality

Outline:

- Review strong law for renewals
- Review of residual life
- Time-averages for renewal rewards
- Stopping trials for stochastic processes
- Wald's equality
- Stop when you're ahead

Theorem: If $\left\{Z_{n} ; n \geq 1\right\}$ converges to α WP1, (i.e., $\left.\operatorname{Pr}\left\{\omega: \lim _{n}\left(Z_{n}(\omega)-\alpha\right)=0\right\}=1\right)$, and $f(x)$ is continuous at α. Then $\operatorname{Pr}\left\{\omega: \lim _{n} f\left(Z_{n}(\omega)\right)=\alpha\right\}=1$.
For a renewal process with inter-renewals $X_{i}, 0<$ $\left.\bar{X}<\infty, \operatorname{Pr}\left\{\omega: \lim _{n}\left(\frac{1}{n} S_{n}(\omega)-\bar{X}\right)=0\right\}=1\right)$

$$
\operatorname{Pr}\left\{\omega: \lim _{n \rightarrow \infty} \frac{n}{S_{n}(\omega)}=\frac{1}{\bar{X}}\right\}=1
$$

For renewal processes, n / S_{n} and $N(t) / t$ are related by

The strong law for renewal processes follows from this relation between n / S_{n} and $N(t) / t$.
Theorem: For a renewal process with $\bar{X}<\infty$,

$$
\operatorname{Pr}\left\{\omega: \lim _{t \rightarrow \infty} N(t, \omega) / t=1 / \bar{X}\right\}=1
$$

This says that the rate of renewals over the infinite time horizon (i.e., $\lim _{t} N(t) / t$) is $1 / \bar{X}$ WP1.

This also implies the weak law for renewals,

$$
\lim _{t \rightarrow \infty} \operatorname{Pr}\left\{\left|\frac{N(t)}{t}-\frac{1}{\bar{X}}\right|>\epsilon\right\}=0 \quad \text { for all } \epsilon>0
$$

Def: The residual life $Y(t)$ of a renewal process at time t is the remaining time until the next renewal, i.e., $Y(t)=S_{N(t)+1}-t$.

Residual life is a random process; for each sample point $\omega, Y(t, \omega)$ is a sample function.

$$
\sum_{n=1}^{N(t, \omega)} \frac{X_{i}^{2}(\omega)}{2 t} \leq \frac{1}{t} \int_{0}^{t} Y(t, \omega) d t \leq \sum_{n=1}^{N(t, \omega)+1} \frac{X_{i}^{2}(\omega)}{2 t}
$$

$$
\sum_{i=1}^{N(t, \omega)} \frac{X_{i}^{2}(\omega)}{2 t} \leq \frac{1}{t} \int_{0}^{t} Y(t, \omega) d t \leq \sum_{i=1}^{N(t, \omega)+1} \frac{X_{i}^{2}(\omega)}{2 t}
$$

Going to the limit $t \rightarrow \infty$

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} Y(t, \omega) d t & =\lim _{t \rightarrow \infty} \sum_{n=1}^{N(t, \omega)} \frac{X_{i}^{2}(\omega)}{2 N(t, \omega)} \frac{N(t, \omega)}{t} \\
& =\frac{\mathrm{E}\left[X^{2}\right]}{2 \mathrm{E}[X]}
\end{aligned}
$$

This is infinite if $E\left[X^{2}\right]=\infty$. Think of example where $\mathrm{p}_{X}(\epsilon)=1-\epsilon, \mathrm{p}_{X}(1 / \epsilon)=\epsilon$.

Similar examples: Age $Z(t)=t-S_{N(t)}$ and duration, $\widetilde{X}(t)=S_{N(t)+1}-S_{N(t)}$.

$\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \widetilde{X}(\tau) d \tau=\frac{\mathrm{E}\left[X^{2}\right]}{2 \mathrm{E}[X]} \quad$ WP1.

$\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \widetilde{X}(\tau) d \tau=\frac{\mathrm{E}\left[X^{2}\right]}{\mathrm{E}[X]} \quad$ WP1.

Time-averages for renewal rewards

Residual life, age, and duration are examples of assigning rewards to renewal processes.

The reward $R(t)$ at any time t is restricted to be a function of the inter-renewal period containing t.

In simplest form, $R(t)$ is restricted to be a function $\mathcal{R}(Z(t), \widetilde{X}(t))$.

The time-average for a sample path of $R(t)$ is found by analogy to residual life. Start with the nth interrenewal interval.

$$
R_{n}(\omega)=\int_{S_{n-1}(\omega)}^{S_{n}(\omega)} R(t, \omega) d t
$$

Interval 1 goes from 0 to S_{1}, with $Z(t)=t$. For interval $n, Z(t)=t-S_{n-1}$, i.e., $S_{N(t)}=S_{n-1}$.

$$
\begin{aligned}
R_{n} & =\int_{S_{n-1}}^{S_{n}} R(t) d t \\
& =\int_{S_{n-1}}^{S_{n}} \mathcal{R}(Z(t), \widetilde{X}(t)) d t \\
& =\int_{S_{n-1}}^{S_{n}} \mathcal{R}\left(t-S_{n-1}, X_{n}\right) d t \\
& =\int_{0}^{X_{n}} \mathcal{R}\left(z, X_{n}\right) d z
\end{aligned}
$$

This is a function only of the rv X_{n}. Thus

$$
\mathrm{E}\left[\mathrm{R}_{n}\right]=\int_{x=0}^{\infty} \int_{z=0}^{x} \mathcal{R}(z, x) d z d \mathrm{~F}_{X}(x) .
$$

Assuming that this expectation exists,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{\tau=0}^{t} R(\tau) d \tau=\frac{\mathrm{E}\left[\mathrm{R}_{n}\right]}{\bar{X}} \quad \mathbf{W P} \mathbf{1}
$$

Example: Suppose we want to find the k th moment of the age.

Then $\mathcal{R}(Z(t), \widetilde{X}(t))=Z^{k}(t)$. Thus

$$
\begin{aligned}
& \mathrm{E}\left[R_{n}\right]=\int_{x=0}^{\infty} \int_{z=0}^{x} z^{k} d z d \mathrm{~F}_{X}(x) \\
&=\int_{0}^{\infty} \frac{x^{k+1}}{k+1} d \mathrm{~F}_{X}(x)=\frac{1}{k} \mathrm{E}\left[X^{k+1}\right] \\
& \lim _{t \rightarrow \infty} \frac{1}{t} \int_{\tau=0}^{t} R(\tau) d \tau=\frac{\mathrm{E}\left[X^{k+1}\right]}{(k+1) \bar{X}} \quad \mathbf{W P} \mathbf{1}
\end{aligned}
$$

Stopping trials for stochastic processes

It is often important to analyze the initial segment of a stochastic process, but rather than investigating the interval ($0, t$] for a fixed t, we want to investigate ($0, t$] where t is selected by the sample path up until t.

It is somewhat tricky to formalize this, since t becomes a rv which is a function of $\{X(t) ; \tau \leq t\}$. This approach seems circular, so we have to be careful.

We consider only discrete-time processes $\left\{X_{i} ; i \geq 1\right\}$.

Let J be a positive integer rv that describes when a sequence X_{1}, X_{2}, \ldots, is to be stopped.

At trial $1, X_{1}(\omega)$ is observed and a decision is made, based on $X_{1}(\omega)$, whether or not to stop. If we stop, $J(\omega)=1$

At trial 2 (if $J(\omega) \neq 1$), $X_{2}(\omega)$ is observed and a decision is made, based on $X_{1}(\omega), X_{2}(\omega)$, whether or not to stop. If we stop, $J(\omega)=2$.

At trial 3 (if $J(\omega) \neq 1,2$), $X_{3}(\omega)$ is observed and a decision is made, based on $X_{1}(\omega), X_{2}(\omega), X_{3}(\omega)$, whether or not to stop. If we stop, $J(\omega)=3$, etc.

At each trial n (if stopping has not yet occurred), X_{n} is observed and a decision (based on $X_{1} \ldots, X_{n}$) is made; if we stop, then $J(\omega)=n$.

Def: A stopping trial (or stopping time) J for $\left\{X_{n} ; n \geq\right.$ $1\}$, is a positive integer-valued rv such that for each $n \geq 1$, the indicator $\mathbf{r v} \mathbb{I}_{\{J=n\}}$ is a function of $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.

A possibly defective stopping trial is the same except that J might be defective.

We visualize 'conducting' successive trials X_{1}, X_{2}, \ldots, until some n at which the event $\{J=n\}$ occurs; further trials then cease. It is simpler conceptually to visualize stopping the observation of trials after the stopping trial, but continuing to conduct trials.

Since J is a (possibly defective) rv, the events $\{J=$ $1\},\{J=2\}, \ldots$ are disjoint.

Example 1: A gambler goes to a casino and gambles until broke.

Example 2: Flip a coin until 10 successive heads appear.

Example 3: Test an hypothesis with repeated trials until one or the other hypothesis is sufficiently probable a posteriori.

Example 4: Observe successive renewals in a renewal process until $S_{n} \geq 100$.

Suppose the rv's X_{i} in a process $\left\{X_{n} ; n \geq 1\right.$ have a finite number of possible sample values. Then any (possibly defective) stopping trial J can be represented as a rooted tree where the trial at which each sample path stops is represented by a terminal node.

Example: X is binary and stopping occurs when the pattern (1, 0) first occurs.

Wald's equality

Theorem (Wald's equality) Let $\left\{X_{n} ; n \geq 1\right\}$ be a sequence of IID rv's, each of mean \bar{X}. If J is a stopping trial for $\left\{X_{n} ; n \geq 1\right\}$ and if $\mathrm{E}[J]<\infty$, then the sum $S_{J}=X_{1}+X_{2}+\cdots+X_{J}$ at the stopping trial J satisfies

$$
\mathrm{E}\left[S_{J}\right]=\bar{X} \mathrm{E}[J]
$$

Prf:

$$
\begin{gathered}
S_{J}=X_{1} \mathbb{I}_{J \geq 1}+X_{2} \mathbb{I}_{J \geq 2}+\cdots+X_{n} \mathbb{I}_{J \geq n}+\cdots \\
\mathrm{E}\left[S_{J}\right]=\mathrm{E}\left[\sum_{n} X_{n} \mathbb{I}_{J \geq n}\right]=\sum_{n} \mathrm{E}\left[X_{n} \mathbb{I}_{J \geq n}\right]
\end{gathered}
$$

The essence of the proof is to show that X_{n} and $\mathbb{I}_{J \geq n}$ are independent.

To show that X_{n} and $\mathbb{I}_{J \geq n}$ are independent, note that $\mathbb{I}_{J \geq n}=1-\mathbb{I}_{J<n}$. Also $\mathbb{I}_{J<n}$ is a function of X_{1}, \ldots, X_{n-1}. Since the X_{i} are IID, X_{n} is independent of X_{1}, \ldots, X_{n-1}, and thus $\mathbb{I}_{J<n}$, and thus of $\mathbb{I}_{J \geq n}$.

This is surprising, since X_{n} is certainly not independent of $\mathbb{I}_{J=n}$, nor of $\mathbb{I}_{J=n+1}$, etc.

The resolution of this 'paradox' is that, given that $J \geq n$ (i.e., that stopping has not occured before trial n), the trial at which stopping occurs depends on X_{n}, but whether or not $J \geq n$ occurs depends only on X_{1}, \ldots, X_{n-1}.

Now we can finish the proof.

$$
\begin{aligned}
\mathrm{E}\left[S_{J}\right] & =\sum_{n} \mathrm{E}\left[X_{n} \mathbb{I}_{J \geq n}\right] \\
& =\sum_{n} \mathrm{E}\left[X_{n}\right] \mathrm{E}\left[\mathbb{I}_{J \geq n}\right] \\
& =\bar{X} \sum_{n} \mathrm{E}\left[\mathbb{I}_{J \geq n}\right] \\
& =\bar{X} \sum_{n} \operatorname{Pr}\{J \geq n\}=\bar{X} \mathrm{E}[J]
\end{aligned}
$$

In many applications, this gives us one equation in two quantities neither of which is known. Frequently, $\mathrm{E}\left[S_{J}\right]$ is easy to find and this solves for $\mathrm{E}[J]$.

The following example shows, among other things, why $\mathrm{E}[J]<\infty$ is required for Wald's equality.

Stop when you're ahead

Consider tossing a coin with probability of heads equal to p. $\$ 1$ is bet on each toss and you win on heads, lose on tails. You stop when your winnings reach \$1.

If $p>1 / 2$, your winnings (in the absence of stopping) would grow without bound, passing through 1, so J must be a rv. $S_{J}=1$ WP1, so $\mathrm{E}\left[S_{J}\right]=1$. Thus, Wald says that $\mathrm{E}[J]=1 / \bar{X}=\frac{1}{2 p-1}$. Let's verify this in another way.

Note that $J=1$ with probability p. If $J>1$, i.e., if $S_{1}=-1$, then the only way to reach $S_{n}=1$ is to go from $S_{1}=-1$ to $S_{m}=0$ for some m (requiring \bar{J} steps on average); \bar{J} more steps on average then gets to 1 . Thus $\bar{J}=1+(1-p) 2 \bar{J}=\frac{1}{2 p-1}$.

Next consider $p<1 / 2$. It is still possible to win and stop (for example, $J=1$ with probability p and $J=3$ with probability $p^{2}(1-p)$). It is also possible to head South forever.

Let $\theta=\operatorname{Pr}\{J<\infty\}$. Note that $\operatorname{Pr}\{J=1\}=p$. Given that $J>1$, i.e., that $S_{1}=-1$, the event $\{J<\infty\}$ requires that $S_{m}-S_{1}=1$ for some m, and then $S_{n}-S_{m}=1$ for some $n>m$. Each of these are independent events of probability θ, so

$$
\theta=p+(1-p) \theta^{2}
$$

There are two solutions, $\theta=p /(1-p)$ and $\theta=1$, which is impossible. Thus J is defective and Wald's equation is inapplicable.

Finally consider $p=1 / 2$. In the limit as p approaches 1/2 from below, $\operatorname{Pr}\{J<\infty\}=1$. We find other more convincing ways to see this later. However, as p approaches $1 / 2$ from above, we see that $\mathrm{E}[J]=\infty$.

Wald's equality does not hold here, since $\mathrm{E}[J]=\infty$, and in fact does not make sense since $\bar{X}=0$.

However, you make your \$1 with probability 1 in a fair game and can continue to repeat the same feat.

It takes an infinite time, however, and requires access to an infinite capital.

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

