
Def: A stopping trial (or stopping time) J for a 
sequence {Xn; n ≥ 1} of rv’s is a positive integer-
valued rv such that for each n ≥ 1, the indicator rv 
I{J=n} is a function of {X1, X2, . . . , Xn}. 

A possibly defective stopping trial is the same ex
cept that J might be a defective rv. For many ap
plications of stopping trials, it is not initially obvious 
whether J is defective. 

Theorem (Wald’s equality) Let {Xn; n ≥ 1} be a se
quence of IID rv’s, each of mean X. If J is a stop
ping trial for {Xn; n ≥ 1} and if E [J] < ∞, then the 
sum SJ = X1 + X2 + · · · + XJ at the stopping trial J
satisfies 

E [SJ ] = XE [J] . 
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Outline: 

• Review Wald’s equality 

• The elementary renewal theorem 

• Generalized stopping trials 

• The G/G/1 queue 

• Little’s theorem 

• Pollaczek-Khinchin result for M/G/1 
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The elementary renewal theorem 

Wald’s equality is useful for determining E [N(t)] as 
a function of t for a renewal counting process. We 
have the strong and weak laws for N(t) as t → ∞, 
but often it is useful to be explicit for finite t. 

For a given t, let J be the smallest n for which Sn > 
t. Then J is a stopping trial for the inter-arrivals 
{Xi; i ≥ 1}. That is, we stop at trial n if Sn > t and 
Sn 1 ≤ ,− t  and this is determined by X1, . . . , Xn. 

Note N(t) is the number of arrivals that have oc
cured up to and including t, so N(t) + 1 = J is the 
number of the first arrival after J. Since E [N(t)] is 
finite, E [J] < ∞. From Wald, 

E 
�
SN(t)+1 

� 
= XE [J] = X(E [N(t)] + 1) 
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E 
�
SN(t)+1 

Wald’s equality  relates

�
= XE [J] = X(E [N(t)] + 1) 

� �  two unkno wn quantities, E [N(t)] 
and E S ( )+1 . Since  , we get a simple N t E

�
SN(t)+1 

�
> t

bound from this. 

E 
�  
SN(t)+1 

�
t 

E [N(t)] = − 1 >
X 
− 1 

X 
Thm (Elementary renewal thm): Let X be mean 
inter-renewal of a renewal counting process {N(t); t > 
0}. Then limt→∞ E [N(t)/t] = 1/X. 

Pf: Need an upper bound on E [N(t)]. Truncate X 
to X ≤ b, carry out bound, let b grow with t. 

We can view this as convergence in the mean (one 
more type of convergence). 
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Generalized stopping trials 

Def: A generalized stopping trial J for a sequence of 
pairs of rv’s (X1, V1), (X2, V2) . . . , is a positive integer 
rv such that, for each n ≥ 1, I{J=n} is a function of 
X1, V1, X2, V2, . . . , Xn, Vn. 

It follows that I  = 1 − I{J<n} {J≥n} is a function of 
X1, V1, X2, V2, . . . , Xn−1, Vn . −1

Wald’s equality, E [Sn] = XE [J], where Sn = X1+ · · ·+
Xn still holds (by the same proof) if the Xi are IID 
and each Xi is independent of (X1, V1, . . . , Xi )−1, Vi−1 . 

Also each Vi can be replaced by a vector of rv’s. 
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The G/G/1 queue 

Consider the first arrival (s3 above) that starts a 
new busy period as a generalized stopping trial. 

The sequence of paired rv’s is (X1, V0), (X2, V1), . . . 
‘Stopping’ at J = 3 is f(X1, V0, X2, V1, X3, V2). 

Wald’s equality holds. Also new arrivals (XJ+1, XJ+2, . . . 
and services (VJ, VJ+1, . . . are independent of the old. 
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The stopping rule J here is the index of the first 
arrival in a new busy period. The arrivals and de
partures in the new busy period are independent 
and identically distributed to those in the old. 

Thus the intervals between new busy periods form 
a renewal process. 

We then have one renewal process embedded in 
another. Call one the arrival process and the other 
the renewal process. The renewal process embodies 
both arrivals and services. 

This analysis applies also to G/G/m and to many 
other queuing systems. 
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Little’s theorem 

Consider a queueing system where the arrival pro
cess is a renewal process. Assume an arrival at time 
0. 

The service process can be almost anything, but 
assume a G/G/1 queue to be specific. 

Assume the system empties out eventually WP1 
and that it restarts on the next arrival. 

We have seen that intervals between restartings 
form a renewal process for the G/G/1 queue, and 
for an even broader class of queues. 
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In each inter-renewal period, 

Rn = 
�  

L(τ) dτ = 
�

Wi, 
i 

where the sum is over the arrivals in that inter-
renewal period. The time averages are then 

L
�(1 A t)

ta = lim Wi 
t→∞ t i=1 

A(t) 
=1 Wi A(t) 

= lim i lim 
t→∞ 

�

A(t) t→∞ t 
= Wta λ 

where λ is arrival rate. 

This is Little’s theorem. The time-average num
ber in the system equals λ times the time-average 
customer wait WP1. 
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Let L(τ) = A(τ ) − D(τ ). This depends on the de
parture process, but its value is a function of the 
inter-arrivals and service times within the current 
inter-renewal period. 

Thus it can be viewed as a generalized renewal-
reward function. 

The total reward within an inter-renewal period is 
then the integral of L(τ) over that period (i.e., Rn). 

9 



The Pollaczek-Khinchin formula for M/G/1 queues 

Let X1, X2, . . . be IID exponential arrivals at rate λ 
and let V1, V2, . . . be IID service times with�  first and  
second moments V = E [V ] and V 2 = E V 2

�
. Then 

the Pollaczek-Khinchin formula gives the expected 
delay in queue (between arrival and entering service) 
as 

λV 2 
q W = where ρ = λV 

2(1 − ρ) 

The expected total delay, total number in system 
and number in queue are then 

λV 2 2λ V 2 2
 λ V 2 

W = + V ; N  q= + ρ; N = 
2(1 − ρ) 2(1 − ρ) 2(1 − ρ) 
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In essence, Little’s theorem is an accounting iden

tity. Over a busy period and the following idle pe
 

riod (i.e., an inter-renewal period), 
�

L(τ) dτ = 
�

i Wi. 

To turn this simple result into mathematics, we 

need renewal theory, which essentially allows us to 

go to the limit of many renewals. 

The question is not whether L = λW , but whether 

these quantities exist as sensible time averages WP1 

or as limiting ensemble averages. 
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Examples: For deterministic service, V 2 = (V )2, so 

W q ρV 
= for M/D/1 

2(1 − ρ) 

For exponential inter-arrivals M/M/1, V 2 = 2(V )2 

so 

 ρV 
W q = for M/M/1. 

1 − ρ 

For pV (�) = 1 − �, pV (1/�) = �, 

W q ρ 
≈ 

�(1 − ρ) 
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✛ V ✲✛ 1 V ✲✛ 2 V ✲ 3 
0 

q 2Why does W go up with V ? Look at the time-

average wait, E [R(t)], for the customer in service to 

finish service. 

Have you ever noticed, when entering a line for 

service that the customer being served often takes 

much longer than anyone else? 
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✻❅ ❅ 

❅ ❅ ❅❅ ❅ ❅❅ ❅ R(t) ❅ ❅
V ❅ ❅   ❅ ❅ 1 ❅❅ ❅ ❅ ❅ ❅❅ ❅ ❅ ❅ ❅❅ ❅ ❅ ❅ ❅❅  ❅❄ ❅ t ❅ ❅❅ ❅ ❅ ❅ 

✛ V ✲✛ ✲1 V ✛ 2 V ✲ 3 
0 

❅

1 � τ 1 A�(τ ) V 2 
E [R] = lim R(t) dt = lim i 

τ →∞ τ 0 τ →∞ τ 2 i=1 

λV 2 
= (time until end of current service) 

2

q W = E [R] + qN V (add service of queue)


λV 2

= (a little Little) 

2(1 − λV ) 
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