6.262: Discrete Stochastic Processes 3/28/11

Lecture 14: Review
The Basics: Let there be a sample space, a set of events (with axioms), and a probability measure on the events (with axioms).

In practice, there is a basic countable set of rv's that are IID, Markov, etc.

A sample point is then a collection of sample values, one for each rv.

There are often uncountable sets of rv's, e.g., $\{N(t) ; t \geq$ $0\}$, but they can usually be defined in terms of a basic countable set.

For a sequence of IID rv's, X_{1}, X_{2}, \ldots (Poisson and renewal processes), the laws of large numbers specify long term behavior.

The sample (time) average is $S_{n} / n, S_{n}=X_{1}+\cdots X_{n}$. It is a rv of mean \bar{X} and variance σ^{2} / n.

The weak LLN: If $\mathrm{E}[|X|]<\infty$, then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\left|\frac{S_{n}}{n}-\bar{X}\right| \geq \epsilon\right\}=0 \quad \text { for every } \epsilon>0
$$

This says that $\operatorname{Pr}\left\{\frac{S_{n}}{n} \leq x\right\}$ approaches a unit step at \bar{X} as $n \rightarrow \infty$ (Convergence in probability and in distribution).

The strong LLN: If $\mathrm{E}[|X|]<\infty$, then

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\bar{X} \quad \text { W.P. } 1
$$

This says that, except for a set of sample points of zero probability, all sample sequences have a limiting sample path average equal to \bar{X}.

Also, essentially $\lim _{n \rightarrow \infty} f\left(S_{n} / n\right)=f(\bar{X})$ W.P.1.

There are many extensions of the weak law telling how fast the convergence is. The most useful result about convergence speed is the central limit theorem. If $\sigma_{X}^{2}<\infty$, then

$$
\lim _{n \rightarrow \infty}\left[\operatorname{Pr}\left\{\frac{S_{n}-n \bar{X}}{\sqrt{n} \sigma} \leq y\right\}\right]=\int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-x^{2}}{2}\right) d x
$$

Equivalently,

$$
\lim _{n \rightarrow \infty}\left[\operatorname{Pr}\left\{\frac{S_{n}}{n}-\bar{X} \leq \frac{y \sigma}{\sqrt{n}}\right\}\right]=\int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-x^{2}}{2}\right) d x
$$

In other words, S_{n} / n converges to \bar{X} with $1 / \sqrt{n}$ and becomes Gaussian as an extra benefit.

Arrival processes

Def: An arrival process is an increasing sequence of rv's, $0<S_{1}<S_{2}<\cdots$. The interarrival times are $X_{1}=S_{1}$ and $X_{i}=S_{i}-S_{i-1}, i \geq 1$.

An arrival process can model arrivals to a queue, departures from a queue, locations of breaks in an oil line, etc.

The process can be specified by the joint distribution of either the arrival epochs or the interarrival times.

The counting process, $\{N(t) ; t \geq 0\}$, for each t, is the number of arrivals up to and including t, i.e., $N(t)=\max \left\{n: S_{n} \leq t\right\}$. For every n, t,

$$
\left\{S_{n} \leq t\right\}=\{N(t) \geq n\}
$$

Note that $S_{n}=\min \{t: N(t) \geq n\}$, so that $\{N(t) ; t \geq 0\}$ specifies $\left\{S_{n} ; n>0\right\}$.

Def: A renewal process is an arrival process for which the interarrival rv's are IID. A Poisson process is a renewal process for which the interarrival rv's are exponential.

Def: A memoryless rv is a nonnegative non-deterministic rv for which

$$
\operatorname{Pr}\{X>t+x\}=\operatorname{Pr}\{X>x\} \operatorname{Pr}\{X>t\} \quad \text { for all } x, t \geq 0 .
$$

This says that $\operatorname{Pr}\{X>t+x \mid X>t\}=\operatorname{Pr}\{X>x\}$. If X is the time until an arrival, and the arrival has not happened by t, the remaining distribution is the original distribution.

The exponential is the only memoryless rv.

Thm: Given a Poisson process of rate λ, the interval from any given $t>0$ until the first arrival after t is a rv Z_{1} with $F_{Z_{1}}(z)=1-\exp [-\lambda z] . Z_{1}$ is independent of all $N(\tau)$ for $\tau \leq t$.
Z_{1} (and $N(\tau)$ for $\tau \leq t$) are also independent of future interarrival intervals, say Z_{2}, Z_{3}, \ldots. Also $\left\{Z_{1}, Z_{2}\right.$, \ldots,$\} are the interarrival intervals of a PP starting$ at t.

The corresponding counting process is $\{\tilde{N}(t, \tau) ; \tau \geq$ $t\}$ where $\tilde{N}(t, \tau)=N(\tau)-N(t)$ has the same distribution as $N(\tau-t)$.

This is called the stationary increment property.

Def: The independent increment property for a counting process is that for all $0<t_{1}<t_{2}<\cdots t_{k}$, the rv's $N\left(t_{1}\right),\left[\tilde{N}\left(t_{1}, t_{2}\right)\right], \ldots,\left[\tilde{N}\left(t_{n-1}, t_{n}\right)\right]$ are independent.
Thm: PP's have both the stationary and independent increment properties.
PP's can be defined by the stationary and independent increment properties plus either the Poisson PMF for $N(t)$ or

$$
\begin{aligned}
\operatorname{Pr}\{\tilde{N}(t, t+\delta)=1\} & =\lambda \delta+o(\delta) \\
\operatorname{Pr}\{\tilde{N}(t, t+\delta)>1\} & =o(\delta) .
\end{aligned}
$$

The probability distributions
$f_{S_{1}, \ldots, S_{n}}\left(s_{1}, \ldots, s_{n}\right)=\lambda^{n} \exp \left(-\lambda s_{n}\right) \quad$ for $0 \leq s_{1} \leq \cdots \leq s_{n}$ The intermediate arrival epochs are equally likely to be anywhere (with $s_{1}<s_{2}<\cdots$). Integrating,

$$
f_{S_{n}}(t)=\frac{\lambda^{n} t^{n-1} \exp (-\lambda t)}{(n-1)!} \quad \text { Erlang }
$$

The probability of arrival n in $(t, t+\delta)$ is

$$
\begin{aligned}
\operatorname{Pr}\{N(t)=n-1\} \lambda \delta & =\delta f_{S_{n}}(t)+o(\delta) \\
\operatorname{Pr}\{N(t)=n-1\} & =\frac{f_{S_{n}}(t)}{\lambda} \\
& =\frac{(\lambda t)^{n-1} \exp (-\lambda t)}{(n-1)!} \\
p_{N(t)}(n) & =\frac{(\lambda t)^{n} \exp (-\lambda t)}{n!} \quad \text { Poisson }
\end{aligned}
$$

If $N_{1}(t), N_{2}(t), \ldots, N_{k}(t)$ are independent PP's of rates $\lambda_{1}, \ldots, \lambda_{k}$, then $N(t)=\sum_{i} N_{i}(t)$ is a Poisson process of rate $\sum_{j} \lambda_{j}$.

Two views: 1) Look at arrival epochs, as generated, from each process, then combine all arrivals into one Poisson process.
(2) Look at combined sequence of arrival epochs, then allocate each arrival to a sub-process by a sequence of IID rv's with PMF $\lambda_{i} / \sum_{j} \lambda_{j}$.

This is the workhorse of Poisson type queueing problems.

Conditional arrivals and order statistics

$$
\begin{gathered}
f_{\vec{S}_{(n) \mid N(t)}}\left(\bar{s}^{(n)} \mid n\right)=\frac{n!}{t^{n}} \quad \text { for } 0<s_{1}<\cdots s_{n}<t \\
\operatorname{Pr}\left\{S_{1}>\tau \mid N(t)=n\right\}=\left[\frac{t-\tau}{t}\right]^{n} \quad \text { for } 0<\tau \leq t \\
\operatorname{Pr}\left\{S_{n}<t-\tau \mid N(t)=n\right\}=\left[\frac{t-\tau}{t}\right]^{n} \quad \text { for } 0<\tau \leq t
\end{gathered}
$$

The joint distribution of S_{1}, \ldots, S_{n} given $N(t)=n$ is the same as the joint distribution of n uniform rv's that have been ordered.

Finite-state Markov chains

An integer-time stochastic process $\left\{X_{n} ; n \geq 0\right\}$ is a Markov chain if for all n, i, j, k, \ldots,

$$
\operatorname{Pr}\left\{X_{n}=j \mid X_{n-1}=i, X_{n-2}=k \ldots X_{0}=m\right\}=P_{i j},
$$

where $P_{i j}$ depends only on i, j and $\mathrm{p}_{X_{0}}(m)$ is arbitrary. A Markov chain is finite-state if the sample space for each X_{i} is a finite set, \mathcal{S}. The sample space \mathcal{S} usually taken to be the integers $1,2, \ldots, \mathrm{M}$.

A Markov chain is completely described by $\left\{P_{i j} ; 1 \leq\right.$ $i, j \leq \mathbf{M}\}$ plus the initial probabilities $\mathrm{p}_{X_{0}}(i)$.
The set of transition probabilities $\left\{P_{i j} ; 1 \leq i, j \leq\right.$ $\mathbf{M}\}$, is usually viewed as the Markov chain with $\mathrm{p}_{X_{0}}$ viewed as a parameter.

A finite-state Markov chain can be described as a directed graph or as a matrix.

An edge (i, j) is put in the graph only if $P_{i j}>0$, making it easy to understand connectivity.

The matrix is useful for algebraic and asymptotic issues.

Classification of states

An (n-step) walk is an ordered string of nodes (states), say $\left(i_{0}, i_{1}, \ldots i_{n}\right), n \geq 1$, with a directed arc from i_{m-1} to i_{m} for each $m, 1 \leq m \leq n$.
A path is a walk with no repeated nodes.
A cycle is a walk in which the last node is the same as the first and no other node is repeated.

Walk: $(4,4,1,2,3,2)$
Walk: $(4,1,2,3)$
Path: (4, 1, 2, 3)
Path: $(6,3,2)$
Cycle: $(2,3,2)$
Cycle: $(5,5)$
A node j is accessible from $i,(i \rightarrow j)$ if there is a walk from i to j, i.e., if $P_{i j}^{n}>0$ for some $n>0$.

If $(i \rightarrow j)$ and $(j \rightarrow k)$ then $(i \rightarrow k)$.
Two states i, j communicate (denoted $i \leftrightarrow j$)) if $(i \rightarrow j)$ and $(j \rightarrow i)$.

A class \mathcal{C} of states is a non-empty set such that ($i \leftrightarrow j$) for each $i, j \in \mathcal{C}$ but $i \nleftarrow j$) for each $i \in \mathcal{C}, j \notin \mathcal{C}$.
\mathcal{S} is partitioned into classes. The class \mathcal{C} containing i is $\{i\} \bigcup\{j:(i \leftrightarrow j)\}$.

For finite-state chains, a state i is transient if there is a $j \in \mathcal{S}$ such that $i \rightarrow j$ but $j \nrightarrow i$. If i is not transient, it is recurrent.

All states in a class are transient or all are recurrent.
A finite-state Markov chain contains at least one recurrent class.

The period, $d(i)$, of state i is $\operatorname{gcd}\left\{n: P_{i i}^{n}>0\right\}$, i.e., returns to i can occur only at multiples of some largest $d(i)$.

All states in the same class have the same period.
A recurrent class with period $d>1$ can be partitioned into subclasses $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{d}$. Transitions from each class go only to states in the next class (viewing \mathcal{S}_{1} as the next subclass to \mathcal{S}_{d}).

An ergodic class is a recurrent aperiodic class. A Markov chain with only one class is ergodic if that class is ergodic.

Thm: For an ergodic finite-state Markov chain, $\lim _{n} P_{i j}^{n}=\pi_{j}$, i.e., the limit exists for all i, j and is independent of i. $\left\{\pi_{i} ; 1 \leq \mathbf{M}\right\}$ satisfies $\sum_{i} \pi_{i} P_{i j}=\pi_{j}>0$ with $\sum_{i} \pi_{i}=1$.

A substep for this theorem is showing that for an ergodic M state Markov chain, $P_{i j}^{n}>0$ for all i, j and all $n \geq(\mathbf{M}-1)^{2}+1$.

The reason why n must be so large to ensure that $P_{i j}^{n}>0$ is indicated by the following chain where the smallest cycle has length M - 1 .

Starting in state 2, the state at the next 4 steps is deterministic. For the next 4 steps, there are two possible choices then 3, etc.

A second substep is the special case of the theorem where $P_{i j}>0$ for all i, j.

Lemma 2: Let $[P]>0$ be the transition matrix of a finite-state Markov chain and let $\alpha=\min _{i, j} P_{i j}$. Then for all states j and all $n \geq 1$:

$$
\begin{aligned}
\max _{i} P_{i j}^{n+1}-\min _{i} P_{i j}^{n+1} & \leq\left(\max _{\ell} P_{\ell j}^{n}-\min _{\ell} P_{\ell j}^{n}\right)(1-2 \alpha) . \\
\left(\max _{\ell} P_{\ell j}^{n}-\min _{\ell} P_{\ell j}^{n}\right) & \leq(1-2 \alpha)^{n} . \\
\lim _{n \rightarrow \infty} \max _{\ell} P_{\ell j}^{n} & =\lim _{n \rightarrow \infty} \min _{\ell} P_{\ell j}^{n}>0 .
\end{aligned}
$$

This shows that $\lim _{n} P_{\ell j}^{n}$ approaches a limit independent of ℓ, and approaches it exponentially for $[P]>0$. The theorem (for ergodic $[P]$) follows by looking at $\lim _{n} P_{\ell j}^{n h}$ for $h=(\mathbf{M}-1)^{2}+1$.

An ergodic unichain is a Markov chain with one ergodic recurrent class plus, perhaps, a set of transient states. The theorem for ergodic chains extends to unichains:

Thm: For an ergodic finite-state unichain, $\lim _{n} P_{i j}^{n}=$ π_{j}, i.e., the limit exists for all i, j and is independent of i. $\left\{\pi_{i} ; 1 \leq \mathbf{M}\right\}$ satisfies $\sum_{i} \pi_{i} P_{i j}=\pi_{j}$ with $\sum_{i} \pi_{i}=1$. Also $\pi_{i}>0$ for i recurrent and $\pi_{i}=0$ otherwise.

This can be restated in matrix form as $\lim _{n}\left[P^{n}\right]=\vec{e} \pi$ where $\vec{e}=(1,1, \ldots, 1)^{\boldsymbol{\top}}$ and $\boldsymbol{\pi}$ satisfies $\pi[P]=\pi$ and $\pi \vec{e}=1$.

We get more specific results by looking at the eigenvalues and eigenvectors of an arbitrary stochastic matrix (matrix of a Markov chain).
λ is an eigenvalue of $[P]$ iff $[P-\lambda I]$ is singular, iff $\operatorname{det}[P-\lambda I]=0$, iff $[P] \boldsymbol{\nu}=\lambda \boldsymbol{\nu}$ for some $\boldsymbol{\nu} \neq 0$, and iff $\boldsymbol{\pi}[P]=\lambda \boldsymbol{\pi}$ for some $\boldsymbol{\pi} \neq 0$.
\vec{e} is always a right eigenvector of $[P$] with eigenvalue 1 , so there is always a left eigenvector π.
$\operatorname{det}[P-\lambda I]$ is an Mth degree polynomial in λ. It has \mathbf{M} roots, not necessarily distinct. The multiplicity of an eigenvalue is the number of roots of that value.

The multiplicity of $\lambda=1$ is equal to the number of recurrent classes.

For the special case where all M eigenvalues are distinct, the right eigenvectors are linearly independent and can be represented as the columns of an invertible matrix [U]. Thus

$$
[P][U]=[U][\Lambda] ; \quad[P]=[U][\Lambda]\left[U^{-1}\right]
$$

The matrix $\left[U^{-1}\right.$] turns out to have rows equal to the left eigenvectors.

This can be further broken up by expanding [\wedge] as a sum of eigenvalues, getting

$$
\begin{gathered}
{[P]=\sum_{i=1}^{\mathrm{M}} \lambda_{i} \vec{\nu}^{(i)} \vec{\pi}^{(i)}} \\
{\left[P^{n}\right]=[U]\left[\wedge^{n}\right]\left[U^{-1}\right]=\sum_{i=1}^{\mathrm{M}} \lambda_{i}^{n} \vec{\nu}^{(i)} \vec{\pi}^{(i)}}
\end{gathered}
$$

Facts: All eigenvalues λ satisfy $|\lambda| \leq 1$.
For each recurrent class \mathcal{C}, there is one $\lambda=1$ with a left eigenvector equal to steady state on that recurrent class and zero elsewhere. The right eigenvector $\boldsymbol{\nu}$ satisfies $\lim _{n} \operatorname{Pr}\left\{X_{n} \in \mathcal{C} \mid X_{0}=i\right\}=\nu_{i}$.

For each recurrent periodic class of period d, there are d eigenvalues equi-spaced on the unit circle. There are no other eigenvalues with $|\lambda|=1$.

If the eigenvectors span $\mathbb{R}^{\mathbf{M}}$, then $P_{i j}^{n}$ converges to π_{j} as λ_{2}^{n} for a unichain where $\left|\lambda_{2}\right|$ is the is the second largest magnitude eigenvalue.

If the eigenvectors do not span \mathbb{R}^{M}, then $\left[P^{n}\right]=$ $[U][J]\left[U^{-1}\right]$ where $[J]$ is a Jordan form.

Renewal processes

Thm: For a renewal process (RP) with mean interrenewal interval $\bar{X}>0$,

$$
\lim _{t \rightarrow \infty} \frac{N(t)}{t}=\frac{1}{\bar{X}} \quad \text { W.P.1. }
$$

This also holds if $\bar{X}=\infty$.

In both cases, $\lim _{t \rightarrow \infty} N(t)=\infty$ with probability 1.

There is also the elementary renewal theorem, which says that

$$
\lim _{t \rightarrow \infty} \mathrm{E}\left[\frac{N(t)}{t}\right]=\frac{1}{\bar{X}}
$$

Residual life

The integral of $Y(t)$ over t is a sum of terms $X_{n}^{2} / 2$.

The time average value of $Y(t)$ is

$$
\lim _{t \rightarrow \infty} \frac{\int_{\tau=0}^{t} Y(\tau) d \tau}{t}=\frac{\mathrm{E}\left[X^{2}\right]}{2 \mathrm{E}[X]} \quad \text { W.P. } 1
$$

The time average duration is

$$
\lim _{t \rightarrow \infty} \frac{\int_{\tau=0}^{t} X(\tau) d \tau}{t}=\frac{\mathrm{E}\left[X^{2}\right]}{\mathrm{E}[X]} \quad \text { W.P. } 1
$$

For PP, this is twice $\mathrm{E}[X]$. Big intervals contribute in two ways to duration.

Residual life and duration are examples of renewal reward functions.

In general $\mathcal{R}(Z(t), X(t))$ specifies reward as function of location in the local renewal interval.

Thus reward over a renewal interval is

$$
\begin{gathered}
R_{n}=\int_{S_{n-1}}^{S_{n}} \mathcal{R}\left(\tau-S_{n-1}, X_{n}\right) d \tau=\int_{z=0}^{X_{n}} \mathcal{R}\left(z, X_{n}\right) d z \\
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{\tau=0}^{t} R(\tau) d \tau=\frac{\mathrm{E}\left[R_{n}\right]}{\bar{X}} \quad \text { W.P. } 1
\end{gathered}
$$

This also works for ensemble averages.

Def: A stopping trial (or stopping time) J for a sequence $\left\{X_{n} ; n \geq 1\right\}$ of rv's is a positive integervalued rv such that for each $n \geq 1$, the indicator rv $\mathbb{I}_{\{J=n\}}$ is a function of $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.

A possibly defective stopping trial is the same except that J might be a defective rv. For many applications of stopping trials, it is not initially obvious whether J is defective.

Theorem (Wald's equality) Let $\left\{X_{n} ; n \geq 1\right\}$ be a sequence of IID rv's, each of mean \bar{X}. If J is a stopping trial for $\left\{X_{n} ; n \geq 1\right\}$ and if $\mathrm{E}[J]<\infty$, then the sum $S_{J}=X_{1}+X_{2}+\cdots+X_{J}$ at the stopping trial J satisfies

$$
\mathrm{E}\left[S_{J}\right]=\bar{X} \mathrm{E}[J] .
$$

Wald: Let $\left\{X_{n} ; n \geq 1\right\}$ be IID rv's, each of mean \bar{X}. If J is a stopping time for $\left\{X_{n} ; n \geq 1\right\}, \mathrm{E}[J]<\infty$, and $S_{J}=X_{1}+X_{2}+\cdots+X_{J}$, then

$$
\mathrm{E}\left[S_{J}\right]=\bar{X} \mathrm{E}[J]
$$

In many applications, where X_{n} and S_{n} are nonnegative rv's, the restriction $\mathrm{E}[J]<\infty$ is not necessary.

For cases where X is positive or negative, it is necessary as shown by 'stop when you're ahead.'

Little's theorem

This is little more than an accounting trick. Consider an queueing system with arrivals and departures where renewals occur on arrivals to an empty system.

Consider $L(t)=A(t)-D(t)$ as a renewal reward function. Then $L_{n}=\sum W_{i}$ also.

Let \bar{L} be the time average number in system,

$$
\begin{gathered}
\bar{L}=\frac{1}{t} \lim _{t \rightarrow \infty} \int_{0}^{t} L(\tau) d \tau \\
\lambda=\lim _{t \rightarrow \infty} \frac{1}{t} A(t) \\
\bar{W}=\lim _{t \rightarrow \infty} \frac{1}{A(t)} \sum_{i=1}^{A(t)} W_{i} \\
=\lim _{t \rightarrow \infty} \frac{t}{A(t)} \lim _{t \rightarrow \infty} \frac{1}{t} \sum_{i=1}^{A(t)} W_{i} \\
=\bar{L} / \lambda
\end{gathered}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

