6.262: Discrete Stochastic Processes 4/6/11

Lecture 16: Renewals and Countable-state Markov

Outline:

- Review major renewal theorems
- Age and duration at given t
- Countable-state Markov chains

Sample-path time average (strong law for renewals)

$$
\operatorname{Pr}\left\{\lim _{t \rightarrow \infty} \frac{N(t)}{t}=\frac{1}{\bar{X}}\right\}=1
$$

Ensemble \& time average (elementary renewal thm)

$$
\lim _{t \rightarrow \infty} \mathrm{E}\left[\frac{N(t)}{t}\right]=\frac{1}{\bar{X}}
$$

Ensemble average (Blackwell's thm); $m(t)=\mathrm{E}[N(t)]$

$$
\lim _{t \rightarrow \infty}[m(t+\lambda)-m(t)]=\frac{\lambda}{\bar{X}} \quad \text { Arith. } X, \text { span } \lambda
$$

$\lim _{t \rightarrow \infty}[m(t+\delta)-m(t)]=\frac{\delta}{\bar{X}} \quad$ Non-Arith. X, any $\delta>0$

$$
\lim _{t \rightarrow \infty}[m(t+\lambda)-m(t)]=\frac{\lambda}{\bar{X}} \quad \text { Arith. } X, \text { span } \lambda
$$

can be rewritten as

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\{\text { renewal at } n \lambda\}=\frac{\lambda}{\bar{X}} \quad \text { Arith. } X, \text { span } \lambda
$$

If we model an arithmetic renewal process as a Markov chain starting in the renewal state 0 , this essentially says $P_{00}^{n} \rightarrow \pi_{0}$.
$\lim _{t \rightarrow \infty}[m(t+\delta)-m(t)]=\frac{\delta}{\bar{X}} \quad$ Non-Arith. X, any $\delta>0$
This is the best one could hope for. Note that

$$
\lim _{\delta \rightarrow 0} \lim _{t \rightarrow \infty} \frac{m(t+\delta)-m(t)}{\delta}=\frac{1}{\bar{X}}
$$

but the order of the limits can't be interchanged.

Assume an arithmetic renewal process of span 1.
For integer $t, Z(t)=i \geq 0$ and $\widetilde{X}(t)=k>i)$ iff there are successive arrivals at $t-i$ and $t-i+k$.

Let $q_{j}=\operatorname{Pr}\{$ arrival at time $j\}=\sum_{n \geq 1} \mathrm{p}_{S_{n}}(j)$ and let $q_{0}=1$ (nominal arrival at time 0). Then

$$
\mathrm{p}_{Z(t), \tilde{X}(t)}(i, k)=q_{t-i} \mathrm{p}_{X}(k) \quad \text { for } 0 \leq i \leq t ; k>i
$$

$$
\mathrm{p}_{Z(t), \tilde{X}(t)}(i, k)=q_{t-i} \mathrm{p}_{X}(k) \quad \text { for } 0 \leq i \leq t ; k>i
$$

Note that
$q_{i}=\operatorname{Pr}\{$ arrival at $j\}=\mathrm{E}[$ arrival at $j]=m(i)-m(i-1)$,
so by Blackwell, $\lim _{j \rightarrow \infty} 1 / \bar{X}$.

$$
\begin{gathered}
\lim _{t \rightarrow \infty} \mathrm{p}_{Z(t), \tilde{X}(t)}(i, k)=\frac{\mathrm{p}_{X}(k)}{\bar{X}} \quad \text { for } k>i \geq 0 \\
\lim _{t \rightarrow \infty} \mathrm{p}_{Z(t)}(i)=\frac{\sum_{k=i+1}^{\infty} \mathrm{p}_{X}(k)}{\bar{X}}=\frac{\mathrm{F}_{X}^{c}(i)}{\bar{X}} \quad \text { for } i \geq 0 . \\
\lim _{t \rightarrow \infty} \mathrm{p}_{\widetilde{X}(t)}(k)=\frac{\sum_{i=0}^{k-1} \mathrm{p}_{X}(k)}{\bar{X}}=\frac{k \mathrm{p}_{X}(k)}{\bar{X}} \quad \text { for } k \geq 1
\end{gathered}
$$

Now look at asymptotic expected duration:

$$
\lim _{t \rightarrow \infty} \mathrm{E}[\widetilde{X}(t)]=\sum_{k=1}^{\infty} k \cdot k \mathrm{p}_{X}(k) / \bar{X}=\mathrm{E}\left[X^{2}\right] / \bar{X}
$$

This is the same as the sample-path average, but now we can look at the finite t case. More important, we get a different interpretation.

For a given $\widetilde{X}=k$, there are k equiprobable choices for age; for each choice, the joint Z, \widetilde{X} PMF is $\mathrm{p}_{X}(k) / \bar{X}$. Thus large durations are enhanced relative to inter-renewals.

The expected age (after some work) is $\mathrm{E}\left[X^{2}\right] / 2 \bar{X}-$ $\frac{1}{2}$. This is at integer values of large t. The age increases linearly with slope 1 to the next integer value and then drops by 1.

Countable -state Markov chains

The biggest change from finite-state Markov chains to countable-state chains is the concept of a recurrent class. Example:

This Markov chain models a Bernoulli ± 1 process. The state at time n is $S_{n}=X_{1}+X_{2}+\cdots X_{n}$. The state S_{n} at time n is $j=2 k-n$ where k is the number of positive transitions in the n trials.

All states communicate and have a period $d=2$; $\sigma_{S_{n}}^{2}=n\left[1-(p-q)^{2}\right] . \quad P_{0, j}^{n}$ approaches 0 at least as $1 / \sqrt{n}$ for every j.

7

Another example (called a birth-death chain)

In this case, if $p>1 / 2$, the state drifts to the right and $P_{0 j}^{n}$ approaches 0 for all j. If $p<1 / 2$, it drifts to the left and keeps bumping state 0.

A truncated version of this was analyzed in the homework. With $p>1 / 2$, the steady-state increases to the right, with $p<1 / 2$, it increases to the left, and at $p=1 / 2$ it is uniform.

As the truncation point increases, the 'steady-state' remains positive only for $p<1 / 2$.

We want to define recurrent to mean that, given $X_{0}=i$, there is a future return to state i WP1. We will see that the birth-death chain above is recurrent if $p<1 / 2$ and not recurrent if $p>1 / 2$. The case $p=1 / 2$ is strange and will be called null-recurrent.

We can use renewal theory to study recurrent chains, but first must understand first-passage-times.

Def: The first-passage-time probability, $f_{i j}(n)$, is

$$
f_{i j}(n)=\operatorname{Pr}\left\{X_{n}=j, X_{n-1} \neq j, X_{n-2} \neq j, \ldots, X_{1} \neq j \mid X_{0}=i\right\} .
$$

It's the probability, given $X_{0}=i$, that n is the first epoch at which $X_{n}=j$. Then

$$
f_{i j}(n)=\sum_{k \neq j} P_{i k} f_{k j}(n-1) ; \quad n>1 ; \quad f_{i j}(1)=P_{i j}
$$

$$
f_{i j}(n)=\sum_{k \neq j} P_{i k} f_{k j}(n-1) ; \quad n>1 ; \quad f_{i j}(1)=P_{i j} .
$$

Recall that Chapman-Kolmogorov says

$$
P_{i j}^{n}=\sum_{k} P_{i k} P_{k j}^{n-1}
$$

so the difference between $f_{i j}(n)$ and $P_{i j}^{n}$ is only in cutting off the outputs from j (as before in finding expected first-passage-times.

Let $\mathrm{F}_{i j}(n)=\sum_{m \leq n} f_{i j}(m)$ be the probability of reaching j by time n or before. If $\lim _{n \rightarrow \infty} \mathrm{~F}_{i j}(n)=1$, there is a rv $T_{i j}$ with distribution function $\mathrm{F}_{i j}$ that is the first-passage-time rv.

We can also express $\mathrm{F}_{i j}(n)$ as
$\mathrm{F}_{i j}(n)=P_{i j}+\sum_{k \neq j} P_{i k} \mathrm{~F}_{k j}(n-1) ; \quad n>1 ; \quad \mathrm{F}_{i j}(1)=P_{i j}$
Since $F_{i j}(n)$ is nondecreasing in n, the limit $F_{i j}(\infty)$ must exist and satisfy

$$
\mathrm{F}_{i j}(\infty)=P_{i j}+\sum_{k \neq j} P_{i k} \mathrm{~F}_{k j}(\infty) .
$$

Unfortunately, choosing $\mathrm{F}_{i j}(\infty)=1$ for all i, j satisfies these equations. The correct solution turns out to be the smallest set of $\mathrm{F}_{i j}(\infty)$ that satisfies these equations.

If $\mathrm{F}_{j j}(\infty)=1$, then an eventual return from state j occurs with probability 1 and the sequence of returns is the sequence of renewal epochs in a renewal process.

If $\mathrm{F}_{j j}(\infty)=1$, then there is a rv $T_{j j}$ with the distribution function $\mathrm{F}_{j j}(n)$ and j is recurrent. The renewal process of returns to j then has inter-renewal intervals with the distribution function $\mathrm{F}_{j j}(n)$.

From renewal theory, the following are equivalent:

1) state j is recurrent.
2) $\lim _{t \rightarrow \infty} N_{j j}(t)=\infty$ with probability 1 .
3) $\lim _{t \rightarrow \infty} \mathrm{E}\left[N_{j j}(t)\right]=\infty$.
4) $\lim _{t \rightarrow \infty} \sum_{1 \leq n \leq t} P_{j j}^{n}=\infty$.

None of these imply that $\mathrm{E}\left[T_{j j}\right]<\infty$.

Two states are in the same class if they communicate (same as for finite-state chains).

If states i and j are in the same class then either both are recurrent or both transient (not recurrent).

Pf: If j is recurrent, then $\sum_{n} P_{j j}^{n}=\infty$. Then

$$
\sum_{n=1}^{\infty} P_{i i}^{n} \geq \sum_{k=1}^{\infty} P_{i j}^{m} P_{j j}^{k} P_{j k}^{\ell}=\infty
$$

All states in a class are recurrent or all are transient.

By the same kind of argument, if i, j are recurrent, then $\mathrm{F}_{i j}(\infty)=1$.

If a state j is recurrent, then $T_{j j}$ might or might not have a finite expectation.

Def: If $\mathrm{E}\left[T_{j j}\right]<\infty, j$ is positive recurrent. If $T_{j j}$ is a rv and $\mathrm{E}\left[T_{j j}\right]=\infty$, then j is null recurrent. Otherwise j is transient.

For $p=1 / 2$, each state in each of the following is null recurrent.

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

