6.262: Discrete Stochastic Processes 4/11/11

Lecture 17: Countable-state Markov chains

Outline:

- Strong law proofs
- Positive-recurrence and null-recurrence
- Steady-state for positive-recurrent chains
- Birth-death Markov chains
- Reversibility

Let $\{Y_i; i \ge 1\}$ be the IID service times for a $(G/G/\infty)$ queue and let $\{N(t); t > 0\}$ be the renewal process with interarrivals $\{X_i; i \ge 1\}$. Consider the following plausability argument for $\lim_{t\to\infty} \frac{1}{t} \sum_{i=1}^{N(t,\omega)} Y_i(\omega)$.

$$\lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{N(t,\omega)} Y_i(\omega) = \lim_{t \to \infty} \left[\frac{N(t,\omega)}{t} \frac{\sum_{i=1}^{N(t,\omega)} Y_i(\omega)}{N(t,\omega)} \right] (1)$$
$$= \lim_{t \to \infty} \frac{N(t,\omega)}{t} \lim_{t \to \infty} \frac{\sum_{i=1}^{N(t,\omega)} Y_i(\omega)}{N(t,\omega)} (2)$$
$$= \lim_{t \to \infty} \frac{N(t,\omega)}{t} \lim_{n \to \infty} \frac{\sum_{i=1}^{n} Y_i(\omega)}{n} (3)$$
$$= \frac{1}{\overline{X}} \overline{Y} \quad \text{WP1} \qquad (4)$$

This assumes $\overline{X} < \infty$, $\overline{Y} < \infty$.

1

To do this carefully, work from bottom up.

Let $A_1 = \{\omega : \lim_{t\to\infty} N(t,\omega)/t = 1/\overline{X}\}$. By the strong law for renewal processes $\Pr\{A_1\} = 1$.

Let $A_2 = \{\omega : \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i(\omega) = \overline{Y}\}$. By the SLLN, $\Pr\{A_2\} = 1$. Thus (3) = (4) for $\omega \in A_1A_2$ and $\Pr\{A_1A_2\} = 1$.

Assume $\omega \in A_2$, and $\epsilon > 0$. Then $\exists m(\epsilon, \omega)$ such that $|\frac{1}{n}\sum_{i=1}^{n}Y_i(\omega) - \overline{Y}| < \epsilon$ for all $n \ge m(\epsilon, \omega)$. If $\omega \in A_1$ also, then $\lim_{t\to\infty} N(t,\omega) = \infty$, so $\exists t(\epsilon,\omega)$ such that $N(t,\omega) \ge m(\epsilon,\omega)$ for all $t \ge t(\epsilon,\omega)$.

$$\left|\frac{\sum_{i=1}^{N(t,\omega)} Y_i(\omega)}{N(t,\omega)} - \overline{Y}\right| < \epsilon \quad \text{for all } t \ge t(\epsilon,\omega)$$

Since ϵ is arbitrary, (2) = (3) = (4) for $\omega \in A_1A_2$.

Finally, can we interchange the limit of a product of two functions (say f(t)g(t)) with the product of the limits? If the two functions each have finite limits (as the functions of interest do for $\omega \in A_1A_2$), the answer is yes, establishing (1) = (4).

To see this, assume $\lim_t f(t) = a$ and $\lim_t g(t) = b$. Then

$$\begin{array}{rcl} f(t)g(t)-ab &=& (f(t)-a)(g(t)-b)+a(g(t)-b)+b(f(t)-a)\\ |f(t)g(t)-ab| &\leq& |f(t)-a||g(t)-b|+|a||g(t)-b|+|b||f(t)-a| \end{array}$$

For any $\epsilon > 0$, choose $t(\epsilon)$ such that $|f(t) - a| \le \epsilon$ for $t \ge t(\epsilon)$ and $|g(t) - b| \le \epsilon$ for $t \ge t(\epsilon)$. Then

$$|f(t)g(t)-ab| \le \epsilon^2 + \epsilon |a| + \epsilon |b|$$
 for $t \ge t(\epsilon)$.

Thus $\lim_t f(t)g(t) = \lim_t f(t) \lim_t g(t)$.

Review - Countable-state chains

Two states are in the same class if they communicate (same as for finite-state chains).

Thm: All states in the same class are recurrent or all are transient.

Pf: Assume j is recurrent; then $\sum_{n} P_{jj}^{n} = \infty$. For any i such that $j \leftrightarrow i$, $P_{ij}^{m} > 0$ for some m and P_{ji}^{ℓ} for some ℓ . Then (recalling $\lim_{t \to 0} \mathbb{E}[N_{ii}(t)] = \sum_{n} P_{ii}^{n}$)

$$\sum_{n=1}^{\infty} P_{ii}^n \ge \sum_{k=n-m-\ell}^{\infty} P_{ij}^m P_{jj}^k P_{jk}^\ell = \infty$$

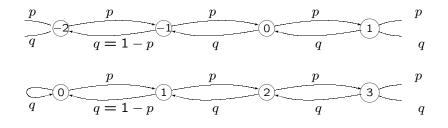
By the same kind of argument, if $i \leftrightarrow j$ are recurrent, then $\sum_{n=1}^{\infty} P_{ij}^n = \infty$ (so also $\lim_t \mathbb{E} \left[N_{ij}^t \right] = \infty$).

5

If a state j is recurrent, then the recurrence time T_{jj} might or might not have a finite expectation.

Def: If $E[T_{jj}] < \infty$, j is positive-recurrent. If T_{jj} is a rv and $E[T_{jj}] = \infty$, then j is null-recurrent. Otherwise j is transient.

For p = 1/2, each state in each of the following is null recurrent.



Positive-recurrence and null-recurrence

Suppose $i \leftrightarrow j$ are recurrent. Consider the renewal process of returns to j with $X_0 = j$. Consider rewards R(t) = 1 whenever X(t) = i. By the renewal-reward thm (4.4.1),

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t R(\tau) d\tau = \frac{\mathsf{E}[\mathsf{R}_n]}{\overline{T}_{jj}} \qquad \mathbf{WP1},$$

where $E[R_n]$ is the expected number of visits to *i* within a recurrence of *j*. The left side is $\lim_{t\to\infty} \frac{1}{t}N_{ji}(t)$, which is $1/\overline{T}_{ji}$. Thus

$$\frac{1}{\overline{T}_{ii}} = \frac{\mathsf{E}\left[R_n\right]}{\overline{T}_{jj}}$$

Since there must be a path from j to i, $E[R_n] > 0$.

Thm: For $i \leftrightarrow j$ recurrent, either both are positive-recurrent or both null-recurrent.

Steady-state for positive-recurrent chains

We define steady-state probabilities for countablestate Markov chains in the same way as for finitestate chains, namely,

Def: $\{\pi_i; i \ge 0\}$ is a steady-state distribution if

$$\pi_j \ge 0; \ \pi_j = \sum_i \pi_i P_{ij}$$
 for all $j \ge 0$ and $\sum_j \pi_j = 1$

Def: An <u>irreducible</u> Markov chain is a Markov chain in which all pairs of states communicate.

For finite-state chains, irreducible means recurrent. Here it can be positive-recurrent, null-recurrent, or transient.

7

If steady-state π exists and if $\Pr\{X_0 = i\} = \pi_i$ for each *i*, then $p_{X_1}(j) = \sum_i \pi_i P_{ij} = \pi_j$. Iterating, $p_{X_n}(j) = \pi_j$, so steady-state is preserved. Let $\widetilde{N}_j(t)$ be number of visits to *j* in (0, t] starting in steady state. Then

$$\mathsf{E}\left[\widetilde{N}_{j}(t)\right] = \sum_{k=1}^{n} \mathsf{Pr}\{X_{k} = j\} = n\pi_{j}$$

Awkward thing about renewals and Markov: $N_j(t)$ works for some things and $N_{jj}(t)$ works for others. Here is a useful hack:

 $N_{ij}(t)$ is 1 for first visit to j (if any) plus $N_{ij}(t) - 1$ for subsequent recurrences j to j. Thus

$$\begin{split} \mathsf{E}\left[N_{ij}(t)\right] &\leq 1 + \mathsf{E}\left[N_{jj}(t)\right] \\ \mathsf{E}\left[\widetilde{N}_{j}(t)\right] &= \sum_{i} \pi_{i} \mathsf{E}\left[N_{ij}(t)\right] \leq 1 + \mathsf{E}\left[N_{jj}(t)\right] \end{split}$$

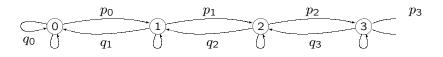
Major theorem: For an irreducible Markov chain, the steady-state equations have a solution if and only if the states are positive-recurrent. If a solution exists, then $\pi_i = 1/\overline{T}_{ii} > 0$ for all *i*.

Pf: (only if; assume π exists, show positive-recur.) For each j and t,

$$\pi_{j} = \frac{\mathsf{E}\left[\widetilde{N}_{j}(t)\right]}{t} \leq \frac{1}{t} + \frac{\mathsf{E}\left[N_{jj}(t)\right]}{t}$$
$$\leq \lim_{t \to \infty} \frac{\mathsf{E}\left[N_{jj}(t)\right]}{t} = \frac{1}{\overline{T}_{jj}}$$

Since $\sum_{j} \pi_{j} = 1$, some $\pi_{j} > 0$. Thus $\lim_{t\to\infty} \mathbb{E} \left[N_{jj}(t) \right] / t > 0$ for that j, so j is positive-recurrent. Thus all states are positive-recurrent. See text to show that ' \leq ' above is equality.

Birth-death Markov chains



For any state *i* and any sample path, the number of $i \rightarrow i + 1$ transitions is within 1 of the number of $i+1 \rightarrow j$ transitions; in the limit as the length of the sample path $\rightarrow \infty$,

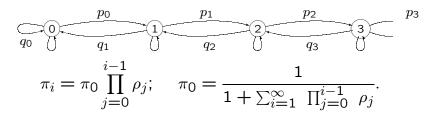
$$\pi_i p_i = \pi_{i+1} q_{i+1}; \qquad \pi_{i+1} = \frac{\pi_i p_i}{q_{i+1}}$$

Letting $\rho_i = p_i/q_{i+1}$, this becomes

$$\pi_i = \pi_0 \prod_{j=0}^{i-1} \rho_j; \quad \pi_0 = \frac{1}{1 + \sum_{i=1}^{\infty} \prod_{j=0}^{i-1} \rho_j}.$$

This agrees with the steady-state equations.

1	1
т	т



This solution is a function only of ρ_0, ρ_1, \ldots and doesn't depend on size of self loops.

The expression for π_0 converges (making the chain positive recurrent) (essentially) if the ρ_i are asymptotically less than 1.

Methodology: We could check renewal results carefully to see if finding π_i by up/down counting is justified. Using the major theorem is easier.

Birth-death chains are particularly useful in queuing where births are arrivals and deaths departures.

Reversibility

$$\Pr\{X_{n+k}, ..., X_{n+1} | X_n, ..., X_0\} = \Pr\{X_{n+k}, ..., X_{n+1} | X_n\}$$

For any A^+ defined on X_{n+1} up and A^- defined on X_{n-1} down,

$$\Pr\{A^{+} | X_{n}, A^{-}\} = \Pr\{A^{+} | X_{n}\}$$
$$\Pr\{A^{+}, A^{-} | X_{n}\} = \Pr\{A^{+} | X_{n}\} \Pr\{A^{-} | X_{n}\}.$$
$$\Pr\{A^{-} | X_{n}, A^{+}\} = \Pr\{A^{-} | X_{n}\}.$$
$$\Pr\{X_{n-1} | X_{n}, X_{n+1}, \dots, X_{n+k}\} = \Pr\{X_{n-1} | X_{n}\}.$$

13

By Bayes,

$$\Pr\{X_{n-1} \mid X_n\} = \frac{\Pr\{X_n \mid X_{n-1}\} \Pr\{X_{n-1}\}}{\Pr\{X_n\}}$$

If the forward chain is in steady state, then

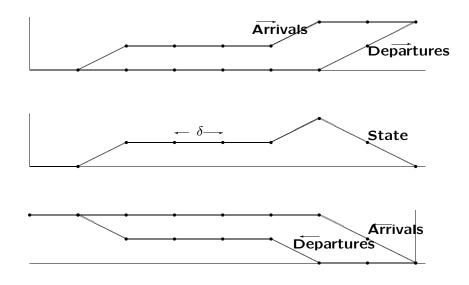
$$\Pr\{X_{n-1} = j \mid X_n = i\} = P_{ji}\pi_j/\pi_i.$$

Aside from the homogeniety involved in starting at time 0, this says that a Markov chain run backwards is still Markov. If we think of the chain as starting in steady state at time $-\infty$, these are the equations of a (homogeneous) Markov chain. Denoting $\Pr\{X_{n-1} = j \mid X_n = i\}$ as the backward transition probabilities P_{ji}^* , forward/ backward are related by

$$\pi_i P_{ij}^* = \pi_j P_{ji}.$$

Def: A chain is reversible if $P_{ij}^* = P_{ij}$ for all i, j.

Thm: A birth/death Markov chain is reversible if it has a steady-state distribution.



15

6.262 Discrete Stochastic Processes Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.