6.262: Discrete Stochastic Processes 4/11/11

Lecture 17: Countable-state Markov chains

Outline:

- Strong law proofs
- Positive-recurrence and null-recurrence
- Steady-state for positive-recurrent chains
- Birth-death Markov chains
- Reversibility

Let $\left\{Y_{i} ; i \geq 1\right\}$ be the IID service times for a ($\mathbf{G} / \mathrm{G} / \infty$) queue and let $\{N(t) ; t>0\}$ be the renewal process with interarrivals $\left\{X_{i} ; i \geq 1\right\}$. Consider the following plausability argument for $\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{i=1}^{N(t, \omega} Y_{i}(\omega)$.

$$
\begin{align*}
\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{i=1}^{N(t, \omega)} Y_{i}(\omega) & =\lim _{t \rightarrow \infty}\left[\frac{N(t, \omega)}{t} \frac{\sum_{i=1}^{N(t, \omega)} Y_{i}(\omega)}{N(t, \omega)}\right] \tag{1}\\
& =\lim _{t \rightarrow \infty} \frac{N(t, \omega)}{t} \lim _{t \rightarrow \infty} \frac{\sum_{i=1}^{N(t, \omega)} Y_{i}(\omega)}{N(t, \omega)}(2) \\
& =\lim _{t \rightarrow \infty} \frac{N(t, \omega)}{t} \lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} Y_{i}(\omega)}{n} \tag{3}\\
& =\frac{1}{\bar{X}} \bar{Y} \quad \text { WP1 } \tag{4}
\end{align*}
$$

This assumes $\bar{X}<\infty, \bar{Y}<\infty$.

To do this carefully, work from bottom up.
Let $A_{1}=\left\{\omega: \lim _{t \rightarrow \infty} N(t, \omega) / t=1 / \bar{X}\right\}$. By the strong law for renewal processes $\operatorname{Pr}\left\{A_{1}\right\}=1$.

Let $A_{2}=\left\{\omega: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} Y_{i}(\omega)=\bar{Y}\right\}$. By the SLLN, $\operatorname{Pr}\left\{A_{2}\right\}=1$. Thus (3) $=(4)$ for $\omega \in A_{1} A_{2}$ and $\operatorname{Pr}\left\{A_{1} A_{2}\right\}=1$.

Assume $\omega \in A_{2}$, and $\epsilon>0$. Then $\exists m(\epsilon, \omega)$ such that $\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}(\omega)-\bar{Y}\right|<\epsilon$ for all $n \geq m(\epsilon, \omega)$. If $\omega \in A_{1}$ also, then $\lim _{t \rightarrow \infty} N(t, \omega)=\infty$, so $\exists t(\epsilon, \omega)$ such that $N(t, \omega) \geq m(\epsilon, \omega)$ for all $t \geq t(\epsilon, \omega)$.

$$
\left|\frac{\sum_{i=1}^{N(t, \omega)} Y_{i}(\omega)}{N(t, \omega)}-\bar{Y}\right|<\epsilon \quad \text { for all } t \geq t(\epsilon, \omega)
$$

Since ϵ is arbitrary, (2)=(3)=(4) for $\omega \in A_{1} A_{2}$.

Finally, can we interchange the limit of a product of two functions (say $f(t) g(t)$) with the product of the limits? If the two functions each have finite limits (as the functions of interest do for $\omega \in A_{1} A_{2}$), the answer is yes, establishing (1) = (4).

To see this, assume $\lim _{t} f(t)=a$ and $\lim _{t} g(t)=b$. Then

$$
\begin{aligned}
f(t) g(t)-a b & =(f(t)-a)(g(t)-b)+a(g(t)-b)+b(f(t)-a) \\
|f(t) g(t)-a b| & \leq|f(t)-a||g(t)-b|+|a||g(t)-b|+|b||f(t)-a|
\end{aligned}
$$

For any $\epsilon>0$, choose $t(\epsilon)$ such that $|f(t)-a| \leq \epsilon$ for $t \geq t(\epsilon)$ and $|g(t)-b| \leq \epsilon$ for $t \geq t(\epsilon)$. Then

$$
|f(t) g(t)-a b| \leq \epsilon^{2}+\epsilon|a|+\epsilon|b| \quad \text { for } t \geq t(\epsilon) .
$$

Thus $\lim _{t} f(t) g(t)=\lim _{t} f(t) \lim _{t} g(t)$.

Review - Countable-state chains

Two states are in the same class if they communicate (same as for finite-state chains).

Thm: All states in the same class are recurrent or all are transient.

Pf: Assume j is recurrent; then $\sum_{n} P_{j j}^{n}=\infty$. For any i such that $j \leftrightarrow i, P_{i j}^{m}>0$ for some m and $P_{j i}^{\ell}$ for some ℓ. Then (recalling $\lim _{t} \mathrm{E}\left[N_{i i}(t)\right]=\sum_{n} P_{i i}^{n}$)

$$
\sum_{n=1}^{\infty} P_{i i}^{n} \geq \sum_{k=n-m-\ell}^{\infty} P_{i j}^{m} P_{j j}^{k} P_{j k}^{\ell}=\infty
$$

By the same kind of argument, if $i \leftrightarrow j$ are recurrent, then $\sum_{n=1}^{\infty} P_{i j}^{n}=\infty$ (so also $\lim _{t} \mathrm{E}\left[N_{i j}^{t}\right]=\infty$).

If a state j is recurrent, then the recurrence time $T_{j j}$ might or might not have a finite expectation.

Def: If $\mathrm{E}\left[T_{j j}\right]<\infty, j$ is positive-recurrent. If $T_{j j}$ is a rv and $\mathrm{E}\left[T_{j j}\right]=\infty$, then j is null-recurrent. Otherwise j is transient.

For $p=1 / 2$, each state in each of the following is null recurrent.

Positive-recurrence and null-recurrence

Suppose $i \leftrightarrow j$ are recurrent. Consider the renewal process of returns to j with $X_{0}=j$. Consider rewards $R(t)=1$ whenever $X(t)=i$. By the renewalreward thm (4.4.1),

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} R(\tau) d \tau=\frac{\mathrm{E}\left[\mathrm{R}_{n}\right]}{\bar{T}_{j j}} \quad \text { WP1 }
$$

where $\mathrm{E}\left[R_{n}\right]$ is the expected number of visits to i within a recurrence of j. The left side is $\lim _{t \rightarrow \infty} \frac{1}{t} N_{j i}(t)$, which is $1 / \bar{T}_{i i}$. Thus

$$
\frac{1}{\bar{T}_{i i}}=\frac{\mathrm{E}\left[R_{n}\right]}{\bar{T}_{j j}}
$$

Since there must be a path from j to i, $\mathrm{E}\left[R_{n}\right]>0$. Thm: For $i \leftrightarrow j$ recurrent, either both are positiverecurrent or both null-recurrent.

7

Steady-state for positive-recurrent chains

We define steady-state probabilities for countablestate Markov chains in the same way as for finitestate chains, namely,

Def: $\left\{\pi_{i} ; i \geq 0\right\}$ is a steady-state distribution if

$$
\pi_{j} \geq 0 ; \pi_{j}=\sum_{i} \pi_{i} P_{i j} \quad \text { for all } j \geq 0 \quad \text { and } \quad \sum_{j} \pi_{j}=1
$$

Def: An irreducible Markov chain is a Markov chain in which all pairs of states communicate.

For finite-state chains, irreducible means recurrent. Here it can be positive-recurrent, null-recurrent, or transient.

If steady-state π exists and if $\operatorname{Pr}\left\{X_{0}=i\right\}=\pi_{i}$ for each i, then $\mathrm{p}_{X_{1}}(j)=\sum_{i} \pi_{i} P_{i j}=\pi_{j}$. Iterating, $\mathrm{p}_{X_{n}}(j)=$ π_{j}, so steady-state is preserved. Let $\widetilde{N}_{j}(t)$ be number of visits to j in ($0, t$] starting in steady state. Then

$$
\mathrm{E}\left[\widetilde{N}_{j}(t)\right]=\sum_{k=1}^{n} \operatorname{Pr}\left\{X_{k}=j\right\}=n \pi_{j}
$$

Awkward thing about renewals and Markov: $\widetilde{N}_{j}(t)$ works for some things and $N_{j j}(t)$ works for others. Here is a useful hack:
$N_{i j}(t)$ is 1 for first visit to j (if any) plus $N_{i j}(t)-1$ for subsequent recurrences j to j. Thus

$$
\begin{aligned}
\mathrm{E}\left[N_{i j}(t)\right] & \leq 1+\mathrm{E}\left[N_{j j}(t)\right] \\
\mathrm{E}\left[\widetilde{N}_{j}(t)\right] & =\sum_{i} \pi_{i} \mathrm{E}\left[N_{i j}(t)\right] \leq 1+\mathrm{E}\left[N_{j j}(t)\right]
\end{aligned}
$$

Major theorem: For an irreducible Markov chain, the steady-state equations have a solution if and only if the states are positive-recurrent. If a solution exists, then $\pi_{i}=1 / \bar{T}_{i i}>0$ for all i.

Pf: (only if; assume π exists, show positive-recur.) For each j and t,

$$
\begin{aligned}
\pi_{j} & =\frac{\mathrm{E}\left[\widetilde{N}_{j}(t)\right]}{t} \leq \frac{1}{t}+\frac{\mathrm{E}\left[N_{j j}(t)\right]}{t} \\
& \leq \lim _{t \rightarrow \infty} \frac{\mathrm{E}\left[N_{j j}(t)\right]}{t}=\frac{1}{\bar{T}_{j j}}
\end{aligned}
$$

Since $\sum_{j} \pi_{j}=1$, some $\pi_{j}>0$. Thus $\lim _{t \rightarrow \infty} \mathrm{E}\left[N_{j j}(t)\right] / t>$ 0 for that j, so j is positive-recurrent. Thus all states are positive-recurrent. See text to show that ' \leq ' above is equality.

Birth-death Markov chains

For any state i and any sample path, the number of $i \rightarrow i+1$ transitions is within 1 of the number of $i+1 \rightarrow j$ transitions; in the limit as the length of the sample path $\rightarrow \infty$,

$$
\pi_{i} p_{i}=\pi_{i+1} q_{i+1} ; \quad \pi_{i+1}=\frac{\pi_{i} p_{i}}{q_{i+1}}
$$

Letting $\rho_{i}=p_{i} / q_{i+1}$, this becomes

$$
\pi_{i}=\pi_{0} \prod_{j=0}^{i-1} \rho_{j} ; \quad \pi_{0}=\frac{1}{1+\sum_{i=1}^{\infty} \prod_{j=0}^{i-1} \rho_{j}}
$$

This agrees with the steady-state equations.

This solution is a function only of $\rho_{0}, \rho_{1}, \ldots$ and doesn't depend on size of self loops.
The expression for π_{0} converges (making the chain positive recurrent) (essentially) if the ρ_{i} are asymptotically less than 1.

Methodology: We could check renewal results carefully to see if finding π_{i} by up/down counting is justified. Using the major theorem is easier.

Birth-death chains are particularly useful in queuing where births are arrivals and deaths departures.

Reversibility

$$
\operatorname{Pr}\left\{X_{n+k}, \ldots X_{n+1} \mid X_{n}, \ldots X_{0}\right\}=\operatorname{Pr}\left\{X_{n+k}, \ldots, X_{n+1} \mid X_{n}\right\}
$$

For any A^{+}defined on X_{n+1} up and A^{-}defined on X_{n-1} down,

$$
\begin{gathered}
\operatorname{Pr}\left\{A^{+} \mid X_{n}, A^{-}\right\}=\operatorname{Pr}\left\{A^{+} \mid X_{n}\right\} \\
\operatorname{Pr}\left\{A^{+}, A^{-} \mid X_{n}\right\}=\operatorname{Pr}\left\{A^{+} \mid X_{n}\right\} \operatorname{Pr}\left\{A^{-} \mid X_{n}\right\} \\
\operatorname{Pr}\left\{A^{-} \mid X_{n}, A^{+}\right\}=\operatorname{Pr}\left\{A^{-} \mid X_{n}\right\} \\
\operatorname{Pr}\left\{X_{n-1} \mid X_{n}, X_{n+1}, \ldots, X_{n+k}\right\}=\operatorname{Pr}\left\{X_{n-1} \mid X_{n}\right\}
\end{gathered}
$$

By Bayes,

$$
\operatorname{Pr}\left\{X_{n-1} \mid X_{n}\right\}=\frac{\operatorname{Pr}\left\{X_{n} \mid X_{n-1}\right\} \operatorname{Pr}\left\{X_{n-1}\right\}}{\operatorname{Pr}\left\{X_{n}\right\}}
$$

If the forward chain is in steady state, then

$$
\operatorname{Pr}\left\{X_{n-1}=j \mid X_{n}=i\right\}=P_{j i} \pi_{j} / \pi_{i}
$$

Aside from the homogeniety involved in starting at time 0, this says that a Markov chain run backwards is still Markov. If we think of the chain as starting in steady state at time $-\infty$, these are the equations of a (homogeneous) Markov chain. Denoting $\operatorname{Pr}\left\{X_{n-1}=j \mid X_{n}=i\right\}$ as the backward transition probabilities $P_{j i}^{*}$, forward/ backward are related by

$$
\pi_{i} P_{i j}^{*}=\pi_{j} P_{j i}
$$

Def: A chain is reversible if $P_{i j}^{*}=P_{i j}$ for all i, j.

Thm: A birth/death Markov chain is reversible if it has a steady-state distribution.

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

