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L19: Countable-state Markov processes
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• Steady-state for irreducible MP’s
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Markov processes

A countable-state Markov process can be defined
as an extension of a countable-state Markov chain.
Along with each step, say from Xn−1 to Xn, in the
embedded Markov chain, there is an exponential
holding time Un before Xn is entered.

The rate of each exponential holding time Un is de-
termined by Xn 1 but is otherwise independent of−
other holding times and other states. The depen-
dence is as illustrated below.
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Each rv Un, conditional on Xn 1, is independent of−
all other states and holding times.
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In a directed tree of dependencies, each rv, condi-
tional on its parent, is statistically independent of
all earlier rv’s. But the direction in the tree is not
needed.
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For example,

Pr{X0X1X2U2} = Pr{X0}Pr{X1|X0}Pr{X2|X1}Pr{U2|X1}
= Pr{X1}Pr{X0|X1}Pr{X2|X1}Pr{U2|X1}

Conditioning on any node breaks the tree into in-
dependent subtrees. Given X2, (X0, X1, U1, U2) and
(U3) and (X3, U4) are statistically independent.
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The evolution in time of a Markov process can be
visualized by

rate νi
U1

X0 = i
0 X(t) = i S1 S2 S3

!
rate νj

$ U2
X1 = j
X(t) = j

!
rate νk

$ U3
X2 = k
X(t) = k

!$

We usually assume that the embedded Markov chain
for a Markov process has no self-transitions, since
these are hidden in a sample path of the process.

The Markov process is taken to be {X(t); t ≥ 0}.
Thus a sample path of Xn; n ≥ 0 and {Un; n ≥ 1}
specifies {X(t); t ≥ 0} and vice-versa.

Pr{X(t)=j | X(τ)=i, {X(s); s < τ}} =

= Pr{X(t−τ)=j | X(0)=i} .
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We can represent a Markov process by a graph for

the embedded Markov chain with rates given on the

nodes:
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Ultimately, we are usually interested in the state as

a function of time, namely the process {X(t); t ≥ 0}.
This is usually called the Markov process itself.

X(t) = Xn for t ∈ [Sn, Sn+1)

Self transitions don’t change X(t).
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We can visualize a transition from one state to an-
other by first choosing the state (via {Pij}) then
choosing the transition time (exponential with νi).

Equivalently, choose the transition time first, then
the state (they are independent).

Equivalently, visualize a Poisson process for each
state pair i, j with a rate qij = νiPij. On entry to
state i, the next state is the j with the next Poisson
arrival according to qij.

What is the conditional distribution of U1 given X0 =
i and X1 = j?

νi =
∑

qij; Pij = qij/νi : [q] specifies [P ],#ν.
j
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It is often more insightful to use qij in a Markov

process graph.
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An M/M/1 queue using [P ] and #ν
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The same M/M/1 queue using [q].

Both these graphs contain the same information.

The latter corresponds more closely to our real-

world interpretation of an M/M/1 queue.
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Sampled-time approximation to MP’s

Suppose we quantize time to δ increments and view
all Poisson processes in a MP as Bernoulli with
Pij(δ) = δqij.

Since shrinking Bernoulli goes to Poisson, we would
conjecture that the limiting Markov chain as δ → 0
goes to a MP in the sense that X(t) ≈ X ′(δn).

It is necessary to put self-transitions into a sampled-
time approximation to model increments where noth-
ing happens.

Pii = 1− δνi; Pij = δqij j = i

This requires δ ≤ 1 and is only possible when themax νi
holding-time rates are bounded.

'
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The embedded-chain model and sampled-time model
of an M/M/1 queue:
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Steady state for the embedded chain, is π0 = (1 −
ρ)/2 and πi = 1(1 1ρ)2ρn for i > 1 where ρ = λ/µ.2 − −

The fraction of transitions going into state i is πi.

Steady state for sampled-time does not depend on
δ and is π′ = (1 − ρ)ρi where ρ = λ/µ. This is thei
fraction of time in state i.
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Renewals for Markov processes

Def: An irreducible MP is a MP for which the em-

bedded Markov chain is irreducible (i.e., all states

are in the same class).

We saw that irreducible Markov chains could be

transient - the state simply wanders off with high

probability, never to return.

We will see that irreducible MP’s can have even

more bizarre behavior such as infinitely many tran-

sitions in a finite time or a transition rate decaying

to 0.
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Review: An irreducible countable-state Markov chain
is positive recurrent iff the steady-state equations,

πj =
∑

πiPij for all j; πj
i

≥ 0 for all j;
∑

πj = 1
j

have a solution. If there is a solution, it is unique
and πi > 0 for all i. Also, the number of visits,
Nij(n), in the first n transitions to j given X0 = i

satisfies

1
lim

n→∞ Nij(n) = πj WP1
n

We guess that for an MP, the fraction of time in
state j should be

πj/νj
pj =

i πi/νi
∑
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Thm: Let Mi(t) be the number of transitions in (0, t]
for a MP starting in state i. Then limt (→∞Mi t) =∞
WP1.

Essentially, given any state, a transition must occur

within finite time. Then another, etc. See text.

Thm: Let Mij(t) be the number of transitions to j

in (0, t] starting in state i. If the embedded chain is

recurrent, then Mij(t) is a delayed renewal process.

Essentially, transitions keep occuring so renewals

into state j must keep occuring.
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Steady-state for irreducible MP’s

Let pj(i) be the time-average fraction of time in
state j for the delayed RP {Mij(t); t > 0}:

) )
Un

)
Xn=j Xn

)
+1=j Xn

)
+2=j Xn+3=j Xn+

)
4=j

!
Rj(t)

$

!$ Wk

From the (delayed) renewal reward theorem,
∫ t
0 Rj(τ)dτ

pj(i) = lim
t→∞

=
t

U(j) 1
=

W(j) νj
WP1.

W(j)

This relates the time-average state probabilities (WP1)
to the mean recurrence times. Also pj(i) is indepen-
dent of the starting state i.

' ' '
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If we can find W(j), we will also know pj. Since
Mij(t) is a (delayed) renewal process, the strong
law for renewals says

lim Mij(t)/t = 1/
t→∞

W(j) WP1

Mij(t)lim
t→∞

Nij(Mi(t))= lim
Mi(t) t→∞ Mi(t)

Nij(n)
= lim

n→∞ = πj WP1.
n

1 Mij(t)= lim
W(j) t→∞

Mij(t)= lim
t t→∞

Mi(t)

Mi(t) t
M

= πj lim i(t)
t→∞

= pjνj
t

This shows that limt Mi(t)/t is independent of i.
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1
pj =

νj

πj=
W(j)

M
lim i(t)

ν tj →∞
WP1.

t

Thm: If the embedded chain is positive recurrent,
then

πj/νj
pj =

M
∑ ; lim i(t)

k πk/ν tk →∞
1

=
t

∑ WP1
k πk/νk

If
∑

k πk/νk < ∞, this is almost obvious except for
mathematical details. We can interpret limt Mi(t)/t
as the transition rate of the process, and it must
have the given value so that j pj = 1.

It is possible to have

∑

∑
k πk/νk = ∞. This suggests

that the rate of transitions is 0.
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Case where k πk/νk =∞
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This can be viewed as a queue where the server

becomes increasingly rattled and the customers in-

creasingly discouraged as the state increases.

We have πj = (1− ρ)ρj for ρ = 2/3. Thus

πj/νj = 2j(1− ρ) jρ = (1− ρ)(4/3)j

By truncating the chain, it can be verified that the

service rate approaches 0 as more states are added.

16



Again assume the typical case of a positive recur-
rent embedded chain with

∑
i πi/νi < ∞. Then

πj/νj
pj =

e

∑ (1)
k πk/νk

W can solve these directly using the steady-state
embedded equations:

πj =
∑

πiPij; πi > 0;
i

∑
πi = 1

∑ ∑ i

pjνj = piqij; pj > 0; pj = 1 (2)
i j

pjνj
πj =

∑ emb

∑ (3)
i piνi

Thm: If edded chain is positive recurrent and

i π/νi < ∞, then (2) has unique solution, {pj} and
{πj} are related by (1) and (3), and

∑
= (

∑
)−1πi/νi pjνj

i i
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We can go the opposite way also. If

pjνj =
∑

piqij; pj > 0; pj = 1
i j

and if
∑

j pjνj < ∞, then πj = pjνj/(

∑

steady-state equations for the emb
the embedded chain is positive recurrent.

∑
j pjνj) gives the

edded chain and

If νj is bounded over j, then
∑

j pjνj < ∞. Also the
sampled-time chain exists and has the same steady-
state solution.

For a birth/death process, we also have piqi,1+1 =
pi+1qi+1,i.

If
∑

j pjνj = ∞, then πj = 0 for all j and the em-
bedded chain is transient or null-recurrent. In the
transient case, there can be infinitely many transi-
tions in finite time, so the notion of steady-state
doesn’t make much sense.
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Imbedded chain for hyperactive birth/death
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Same process in terms of {qij}

There is a nice solution for pj, but the imbedded

chain is transient.

These chains are called irregular. The expected

number of transitions per unit time is infinite, and

they don’t make much sense.
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