6.262: Discrete Stochastic Processes 4/27/11

L21: Hypothesis testing and Random Walks

Outline:

- Random walks
- Detection, decisions, \& Hypothesis testing
- Threshold tests and the error curve
- Thresholds for random walks and Chernoff

Random walks

Def: Let $\left\{X_{i} ; i \geq 1\right\}$ be a sequence of IID rv's, and let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ for $n \geq 1$. The integer-time stochastic process $\left\{S_{n} ; n \geq 1\right\}$ is called a random walk, or, specifically, the random walk based on $\left\{X_{i} ; i \geq 1\right\}$.

Our focus will be on threshold-crossing problems. For example, if X is binary with $\mathrm{p}_{X}(1)=1, \mathrm{p}_{X}(-1)=q=1-p$, then

$$
\operatorname{Pr}\left\{\bigcup_{n=1}^{\infty}\left\{S_{n} \geq k\right\}\right\}=\left(\frac{p}{1-p}\right)^{k} \quad \text { if } p \leq 1 / 2
$$

Detection, decisions, \& Hypothesis testing

The model here contains a discrete, usually binary, rv H called the hypothesis rv. The sample values of H, say 0 and 1, are called the alternative hypotheses and have marginal probabilities, called a priori probabilities $\mathrm{p}_{0}=$ $\operatorname{Pr}\{H=0\}$ and $\mathrm{p}_{1}=\operatorname{Pr}\{H=1\}$.

Among arbitrarily many other rv's, there is a sequence $\vec{Y}^{(m)}=\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right)$ of rv's called the observation. We usually assume that Y_{1}, Y_{2}, \ldots, are IID conditional on $H=$ 0 and IID conditional on $H=1$. Thus, if the Y_{n} are continuous,

$$
\mathrm{f}_{\vec{Y}(m) \mid H}(\vec{y} \mid \ell)=\prod_{n=1}^{m} \mathrm{f}_{Y \mid H}\left(y_{n} \mid \ell\right)
$$

Assume that, on the basis of observing a sample value \vec{y} of \vec{Y}, we must make a decision about H, i.e., choose $H=0$ or $H=1$, i.e., detect whether or not H is 1 .

Decisions in probability theory, as in real life, are not necessarily correct, so we need a criterion for making a choice.

We might maximize the probability of choosing correctly, for example, or, given a cost for the wrong choice, might minimize the expected cost.

Note that the probability experiment here includes not only the experiment of gathering data (i.e., measuring the sample value \vec{y} of \vec{Y}) but also the sample value of the hypothesis.

From Bayes', recognizing that $\mathrm{f}(\vec{y})=p_{0} \mathrm{f}(\vec{y} \mid 0)+p_{1} \mathrm{f}(\vec{y} \mid 1)$

$$
\operatorname{Pr}\{H=\ell \mid \vec{y}\}=\frac{p_{\ell} f_{\vec{Y} \mid H}(\vec{y} \mid \ell)}{p_{0} f_{\vec{Y} \mid H}(\vec{y} \mid 0)+p_{1} f_{\vec{Y} \mid H}(\vec{y} \mid 1)}
$$

Comparing $\operatorname{Pr}\{H=0 \mid \vec{y}\}$ and $\operatorname{Pr}\{H=1 \mid \vec{y}\}$,

$$
\frac{\operatorname{Pr}\{H=0 \mid \vec{y}\}}{\operatorname{Pr}\{H=1 \mid \vec{y}\}}=\frac{p_{0} f_{\vec{Y} \mid H}(\vec{y} \mid 0)}{p_{1} f_{\vec{Y} \mid H}(\vec{y} \mid 1)}
$$

The probability that $H=\ell$ is the correct hypothesis, given the observation, is $\operatorname{Pr}\{H=\ell \mid \vec{Y}\}$. Thus we maximize the a posteriori probability of choosing correctly by choosing the maximum over ℓ of $\operatorname{Pr}\{H=\ell \mid \vec{Y}\}$.

This is called the MAP rule (maximum a posteriori probability). It requires knowing p_{0} and p_{1}.

The MAP rule (and other decision rules) are clearer if we define the likelihood ratio,

$$
\Lambda(\vec{y})=\frac{f_{\vec{Y} \mid H}(\vec{y} \mid 0)}{f_{\vec{Y} \mid H}(\vec{y} \mid 1)}
$$

The MAP rule is then

$$
\Lambda(\vec{y})\left\{\begin{array}{lll}
>p_{1} / p_{0} & ; & \text { select } \widehat{h}=0 \\
\leq p_{1} / p_{0} & ; & \text { select } \widehat{h}=1
\end{array}\right.
$$

Many decision rules, including the most common and the most sensible, are rules that compare $\Lambda(\vec{y})$ to a fixed threshold, say η, independent of \vec{y}. Such decision rules vary only in the way that η is chosen.

Example: For maximum likelihood, the threshold is 1 (this is MAP for $p_{0}=p_{1}$, but it is also used in other ways).

Back to random walks: Note that the logarithm of the threshold ratio is given by

$$
\ln \wedge\left(\vec{y}^{(m)}\right)=\sum_{n=1}^{m} \wedge\left(y_{n}\right) ; \quad \wedge\left(y_{n}\right)=\ln \left(\frac{f_{Y \mid H}\left(y_{n} \mid 0\right)}{f_{Y \mid H}\left(y_{n} \mid 1\right)}\right)
$$

Note that $\Lambda\left(y_{n}\right)$ is a real-valued function of y_{n}, and is the same function for each n. Thus, since Y_{1}, Y_{2}, \ldots, are IID rv's conditional on $H=0$ (or $H=1$), $\wedge\left(Y_{1}\right), \wedge\left(Y_{2}\right)$, are also IID conditional on $H=0$ (or $H=1$).

It follows that $\ln \wedge\left(\vec{y}^{(m)}\right)$, conditional on $H=0$ (or $H=1$) is a sum of m IID rv's and $\left\{\ln \wedge\left(\vec{y}^{(m)}\right) ; m \geq 1\right\}$ is a random walk conditional on $H=0$ (or $H=1$). The two random walks contain the same sequence of sample values but different probability measures.

Later we look at sequential detection, where observations are made until a treshold is passed.

Threshold tests and the error curve

A general hypothesis testing rule (a test) consists of mapping each sample sequence \vec{y} into either 0 or 1 . Thus a test can be viewed as the set A of sample sequences mapped into hypothesis 1 . The error probability, given $H=0$ or $H=1$, using test A, is given by

$$
q_{0}(A)=\operatorname{Pr}\{Y \in A \mid H=0\} ; \quad q_{1}(A)=\operatorname{Pr}\left\{Y \in A^{\mathrm{c}} \mid H=1\right\}
$$

With a priori probabilities p_{0}, p_{1} and $\eta=p_{1} / p_{0}$,

$$
\operatorname{Pr}\{\mathbf{e}(A)\}=p_{0} q_{0}(A)+p_{1} q_{1}(A)=p_{0}\left[q_{0}(A)+\eta q_{1}(A)\right]
$$

For the threshold test based on η,

$$
\begin{gathered}
\operatorname{Pr}\{\mathbf{e}(\eta)\}=p_{0} q_{0}(\eta)+p_{1} q_{1}(\eta)=p_{0}\left[q_{0}(\eta)+\eta q_{1}(\eta)\right] \\
q_{0}(\eta)+\eta q_{1}(\eta) \leq q_{0}(A)+\eta q_{1}(A) ; \quad \text { by } \mathbf{M A P}
\end{gathered}
$$

$$
q_{0}(\eta)+\eta q_{1}(\eta) \leq q_{0}(A)+\eta q_{1}(A) ; \quad \text { by MAP }
$$

Note that the point $q_{0}(A), q_{1}(A)$ does not depend on p_{0}; the a priori probabilities were simply used to prove the above inequality.

For every A and every $\eta,\left(q_{0}(A), q_{1}(A)\right)$ lies NorthEast of the line of slope $-\eta$ through $\left(q_{0}(\eta), q_{1}(\eta)\right)$. Thus $\left(q_{0}(A), q_{1}(A)\right)$ is NE of the upper envelope of these straight lines.

If the vertical axis of the error curve is inverted, it is called a receiver operating curve (ROC) which is a staple of radar system design.

The Neyman-Pearson test is a test that chooses A to minimize $q_{1}(A)$ for a given constraint on $q_{0}(A)$. Typically this is a threshold test, but sometimes, especially if Y is discrete, it is a randomized threshold test.

Thresholds for random walks and Chernoff bounds

The Chernoff bound says that for any real b and any r such that $g_{Z}(r)=\mathrm{E}\left[e^{r Z}\right]$ exists,

$$
\begin{array}{lll}
\operatorname{Pr}\{Z \geq b\} & \leq g_{Z}(r) \exp (-r b) ; & \text { for } b>\bar{Z}, r>0 \\
\operatorname{Pr}\{Z \leq b\} \leq g_{Z}(r) \exp (-r b) ; & \text { for } b<\bar{Z}, r<0
\end{array}
$$

This is most useful when applied to a sum, $S_{n}=X_{1}+\cdots X_{n}$ of IID rv's. If $g_{X}(r)=\mathrm{E}\left[e^{r X}\right]$ exists, then

$$
\mathrm{E}\left[e^{r S_{n}}\right]=\mathrm{E}\left[\prod_{i=1}^{n} e^{r X_{i}}\right]=g_{X}^{n}(r)
$$

$$
\begin{array}{ll}
\operatorname{Pr}\left\{S_{n} \geq n a\right\} \leq g_{X}^{n}(r) \exp (-r n a) ; & \text { for } a>\bar{X}, r>0 \\
\operatorname{Pr}\left\{S_{n} \leq n a\right\} \leq g_{X}^{n}(r) \exp (-r n a) ; & \text { for } a<\bar{X}, r<0
\end{array}
$$

This is easier to interpret and work with if expressed in terms of the semi-invariant MGF, $\gamma_{X}(r)=\ln g_{X}(r)$. Then $g_{X}^{n}(r)=e^{n \gamma_{X}(r)}$ and

$$
\begin{array}{ll}
\operatorname{Pr}\left\{S_{n} \geq n a\right\} \leq \exp \left(n\left[\gamma_{X}(r)-r a\right]\right) ; & \text { for } a>\bar{X}, r>0 \\
\operatorname{Pr}\left\{S_{n} \leq n a\right\} \leq \exp \left(n\left[\gamma_{X}(r)-r a\right]\right) ; & \text { for } a<\bar{X}, r<0
\end{array}
$$

The Chernoff bound, optimized over r, is essentially exponentially tight; i.e., $\operatorname{Pr}\left\{S_{n} \geq n a\right\} \geq \exp \left(n\left(\mu_{X}(a)-\epsilon\right)\right)$ for large enough n.

In looking at threshold problems, we want to find the probability that $\operatorname{Pr}\left\{S_{n} \geq \alpha\right\}$ for any n. Thus we want a bound that focuses on variable n for a fixed α, i.e., on when the threshold is crossed if it is crossed.

We want a bound of the form $\operatorname{Pr}\left\{S_{n} \geq \alpha\right\} \leq \exp \alpha f(n)$

Start with the bound $\operatorname{Pr}\left\{S_{n} \geq n a\right\} \leq \exp \left(n\left[\gamma_{X}\left(r_{0}\right)-r_{0} a\right]\right)$, with $\alpha=a n$ and r_{0} such that $\gamma_{X}^{\prime}\left(r_{0}\right)=\alpha / n$. Substituting $\alpha / \gamma_{X}^{\prime}\left(r_{0}\right)$ for n,

$$
\operatorname{Pr}\left\{S_{n} \geq \alpha\right\} \leq \exp \left(\alpha\left[\frac{\gamma_{X}\left(r_{0}\right)}{\gamma_{X}^{\prime}\left(r_{0}\right)}-r_{0}\right]\right)
$$

$$
\operatorname{Pr}\left\{S_{n} \geq \alpha\right\} \leq \exp \left(\alpha\left[\frac{\gamma_{X}\left(r_{0}\right)}{\gamma_{X}^{\prime}\left(r_{0}\right)}-r_{0}\right]\right)
$$

When n is very large, the slope $\gamma_{X}^{\prime}\left(r_{0}\right)$ is close to 0 and the horizontal intercept (the negative exponent) is very large. As n decreases, the intercept decreases to r^{*} and then increases again.

Thus $\operatorname{Pr}\left\{\bigcup_{n} S_{n} \geq \alpha\right\} \approx \exp \left(-\alpha r^{*}\right)$, where the nature of the approximation remains to be explained.

Example: $\mathrm{p}_{X}(1)=p, \mathrm{p}_{X}(-1)=1-p ; p<1 / 2$. Then $g_{X}(r)=$ $p e^{r}+(1-p) e^{-r} ; \quad \gamma_{X}(r)=\ln \left[p e^{r}+(1-p) e^{-r}\right]$

Since $\gamma_{X}\left(r^{*}\right)=0$, we have $p e^{r^{*}}+(1-p) e^{-r^{*}}=1$. Letting $z=e^{r^{*}}$, this is $p z+(1-p) / z=1$ so z is either 1 or $(1-p) / p$. Thus $r^{*}=\ln (1-p) / p$ and

$$
\operatorname{Pr}\left\{\bigcup_{n} S_{n} \geq \alpha\right\} \approx \exp \left(-\alpha r^{*}\right)=\left(\frac{1-p}{p}\right)^{-\alpha}
$$

which is exact for α integer. The bound for individual n is the exponent in the Gaussian approximation.

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

