6.262: Discrete Stochastic Processes 4/27/11

L21: Hypothesis testing and Random Walks

Outline:

- Random walks
- Detection, decisions, & Hypothesis testing
- Threshold tests and the error curve
- Thresholds for random walks and Chernoff

1

Random walks

Def: Let $\{X_i; i \ge 1\}$ be a sequence of IID rv's, and let $S_n = X_1 + X_2 + \cdots + X_n$ for $n \ge 1$. The integer-time stochastic process $\{S_n; n \ge 1\}$ is called a <u>random walk</u>, or, specifically, the random walk based on $\{X_i; i \ge 1\}$.

Our focus will be on threshold-crossing problems. For example, if X is binary with $p_X(1) = 1$, $p_X(-1) = q = 1 - p$, then

$$\Pr\left\{\bigcup_{n=1}^{\infty} \{S_n \ge k\}\right\} = \left(\frac{p}{1-p}\right)^k \quad \text{if } p \le 1/2.$$

Detection, decisions, & Hypothesis testing

The model here contains a discrete, usually binary, rv H called the hypothesis rv. The sample values of H, say 0 and 1, are called the alternative hypotheses and have marginal probabilities, called a priori probabilities $p_0 = Pr\{H = 0\}$ and $p_1 = Pr\{H = 1\}$.

Among arbitrarily many other rv's, there is a sequence $\vec{Y}^{(m)} = (Y_1, Y_2, \ldots, Y_m)$ of rv's called the observation. We usually assume that Y_1, Y_2, \ldots , are IID conditional on H = 0 and IID conditional on H = 1. Thus, if the Y_n are continuous,

$$\mathsf{f}_{\vec{Y}(m)|H}(\vec{y} \mid \ell) = \prod_{n=1}^{m} \mathsf{f}_{Y|H}(y_n \mid \ell).$$

\mathbf{r}	
0	

Assume that, on the basis of observing a sample value \vec{y} of \vec{Y} , we must make a decision about *H*, i.e., choose H = 0 or H = 1, i.e., detect whether or not *H* is **1**.

Decisions in probability theory, as in real life, are not necessarily correct, so we need a criterion for making a choice.

We might maximize the probability of choosing correctly, for example, or, given a cost for the wrong choice, might minimize the expected cost.

Note that the probability experiment here includes not only the experiment of gathering data (i.e., measuring the sample value \vec{y} of \vec{Y}) but also the sample value of the hypothesis. From Bayes', recognizing that $f(\vec{y}) = p_0 f(\vec{y}|0) + p_1 f(\vec{y}|1)$

$$\Pr\{H = \ell \mid \vec{y}\} = \frac{p_{\ell} f_{\vec{Y}|H}(\vec{y} \mid \ell)}{p_0 f_{\vec{Y}|H}(\vec{y} \mid 0) + p_1 f_{\vec{Y}|H}(\vec{y} \mid 1)}$$

Comparing $\Pr\{H=0 \mid \vec{y}\}$ and $\Pr\{H=1 \mid \vec{y}\}$,

$$\frac{\Pr\{H=0 \mid \vec{y}\}}{\Pr\{H=1 \mid \vec{y}\}} = \frac{p_0 f_{\vec{Y}\mid H}(\vec{y}\mid 0)}{p_1 f_{\vec{Y}\mid H}(\vec{y}\mid 1)}.$$

The probability that $H = \ell$ is the correct hypothesis, given the observation, is $\Pr\{H=\ell \mid \vec{Y}\}$. Thus we maximize the a posteriori probability of choosing correctly by choosing the maximum over ℓ of $\Pr\{H=\ell \mid \vec{Y}\}$.

This is called the MAP rule (maximum a posteriori probability). It requires knowing p_0 and p_1 .

The MAP rule (and other decision rules) are clearer if we define the likelihood ratio,

$$\wedge(\vec{y}) = \frac{f_{\vec{Y}|H}(\vec{y} \mid 0)}{f_{\vec{Y}|H}(\vec{y} \mid 1)}.$$

The MAP rule is then

$$\Lambda(\vec{y}) \begin{cases} > p_1/p_0 & ; & \text{select } \hat{h} = 0 \\ \le p_1/p_0 & ; & \text{select } \hat{h} = 1. \end{cases}$$

Many decision rules, including the most common and the most sensible, are rules that compare $\Lambda(\vec{y})$ to a fixed threshold, say η , independent of \vec{y} . Such decision rules vary only in the way that η is chosen.

Example: For maximum likelihood, the threshold is 1 (this is MAP for $p_0 = p_1$, but it is also used in other ways).

Back to random walks: Note that the logarithm of the threshold ratio is given by

$$\ln \Lambda(\vec{y}^{(m)}) = \sum_{n=1}^{m} \Lambda(y_n); \quad \Lambda(y_n) = \ln \left(\frac{f_{Y|H}(y_n|0)}{f_{Y|H}(y_n|1)}\right)$$

Note that $\Lambda(y_n)$ is a real-valued function of y_n , and is the same function for each n. Thus, since Y_1, Y_2, \ldots , are IID rv's conditional on H = 0 (or H = 1), $\Lambda(Y_1), \Lambda(Y_2)$, are also IID conditional on H = 0 (or H = 1).

It follows that $\ln \Lambda(\vec{y}^{(m)})$, conditional on H = 0 (or H = 1) is a sum of m IID rv's and $\{\ln \Lambda(\vec{y}^{(m)}); m \ge 1\}$ is a random walk conditional on H = 0 (or H = 1). The two random walks contain the same sequence of sample values but different probability measures.

Later we look at sequential detection, where observations are made until a treshold is passed.

Threshold tests and the error curve

A general hypothesis testing rule (a test) consists of mapping each sample sequence \vec{y} into either 0 or 1. Thus a test can be viewed as the set A of sample sequences mapped into hypothesis 1. The error probability, given H = 0 or H = 1, using test A, is given by

 $q_0(A) = \Pr\{Y \in A \mid H = 0\}; \quad q_1(A) = \Pr\{Y \in A^c \mid H = 1\}$ With a priori probabilities p_0, p_1 and $\eta = p_1/p_0$,

$$\Pr\{\mathbf{e}(A)\} = p_0 q_0(A) + p_1 q_1(A) = p_0 [q_0(A) + \eta q_1(A)]$$

For the threshold test based on η ,

$$\Pr\{\mathbf{e}(\eta)\} = p_0 q_0(\eta) + p_1 q_1(\eta) = p_0 [q_0(\eta) + \eta q_1(\eta)]$$

$$q_0(\eta) + \eta q_1(\eta) \le q_0(A) + \eta q_1(A);$$
 by MAP

7

$$q_0(\eta) + \eta q_1(\eta) \le q_0(A) + \eta q_1(A);$$
 by MAP

Note that the point $q_0(A), q_1(A)$ does not depend on p_0 ; the a priori probabilities were simply used to prove the above inequality.

For every A and every η , $(q_0(A), q_1(A))$ lies NorthEast of the line of slope $-\eta$ through $(q_0(\eta), q_1(\eta))$. Thus $(q_0(A), q_1(A))$ is NE of the upper envelope of these straight lines.

q

If the vertical axis of the error curve is inverted, it is called a receiver operating curve (ROC) which is a staple of radar system design.

The Neyman-Pearson test is a test that chooses A to minimize $q_1(A)$ for a given constraint on $q_0(A)$. Typically this is a threshold test, but sometimes, especially if Y is discrete, it is a randomized threshold test.

Thresholds for random walks and Chernoff bounds

The Chernoff bound says that for any real b and any r such that $g_Z(r) = \mathbb{E}\left[e^{rZ}\right]$ exists,

$\Pr\{Z \ge b\}$	\leq	$g_Z(r) \exp(-rb);$	for $b > \overline{Z}, r > 0$
$\Pr\{Z \le b\}$	\leq	$g_Z(r) \exp(-rb);$	for $b < \overline{Z}, r < 0$

This is most useful when applied to a sum, $S_n = X_1 + \cdots + X_n$ of IID rv's. If $g_X(r) = \mathsf{E}\left[e^{rX}\right]$ exists, then

$$\mathsf{E}\left[e^{rS_n}\right] = \mathsf{E}\left[\prod_{i=1}^n e^{rX_i}\right] = g_X^n(r)$$

$$\Pr\{S_n \ge na\} \le g_X^n(r) \exp(-rna); \quad \text{for } a > \overline{X}, \ r > 0 \\ \Pr\{S_n \le na\} \le g_X^n(r) \exp(-rna); \quad \text{for } a < \overline{X}, \ r < 0$$

1	1
т	Ŧ

This is easier to interpret and work with if expressed in terms of the semi-invariant MGF, $\gamma_X(r) = \ln g_X(r)$. Then $g_X^n(r) = e^{n\gamma_X(r)}$ and

The Chernoff bound, optimized over r, is essentially exponentially tight; i.e., $Pr\{S_n \ge na\} \ge exp(n(\mu_X(a) - \epsilon))$ for large enough n.

In looking at threshold problems, we want to find the probability that $Pr\{S_n \ge \alpha\}$ for any n. Thus we want a bound that focuses on variable n for a fixed α , i.e., on when the threshold is crossed if it is crossed.

We want a bound of the form $Pr\{S_n \ge \alpha\} \le \exp \alpha f(n)$

Start with the bound $\Pr\{S_n \ge na\} \le \exp(n[\gamma_X(r_0) - r_0a])$, with $\alpha = an$ and r_0 such that $\gamma'_X(r_0) = \alpha/n$. Substituting $\alpha/\gamma'_X(r_0)$ for n,

$$\Pr\{S_n \ge \alpha\} \le \exp\left(\alpha \left[\frac{\gamma_X(r_0)}{\gamma'_X(r_0)} - r_0\right]\right)$$

1	3

When *n* is very large, the slope $\gamma'_X(r_0)$ is close to 0 and the horizontal intercept (the negative exponent) is very large. As *n* decreases, the intercept decreases to r^* and then increases again.

Thus $Pr\{\bigcup_n S_n \ge \alpha\} \approx exp(-\alpha r^*)$, where the nature of the approximation remains to be explained.

Example: $p_X(1) = p$, $p_X(-1) = 1-p$; p < 1/2. Then $g_X(r) = pe^r + (1-p)e^{-r}$; $\gamma_X(r) = \ln[pe^r + (1-p)e^{-r}]$

Since $\gamma_X(r^*) = 0$, we have $pe^{r^*} + (1-p)e^{-r^*} = 1$. Letting $z = e^{r^*}$, this is pz + (1-p)/z = 1 so z is either 1 or (1-p)/p. Thus $r^* = \ln(1-p)/p$ and

$$\Pr\left\{\bigcup_{n} S_n \ge \alpha\right\} \approx \exp(-\alpha r^*) = \left(\frac{1-p}{p}\right)^{-\alpha}$$

which is exact for α integer. The bound for individual n is the exponent in the Gaussian approximation.

15

6.262 Discrete Stochastic Processes Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.