6.262: Discrete Stochastic Processes 5/2/11

L22: Random Walks and thresholds

Outline:

- Review of Chernoff bounds
- Wald's identity with 2 thresholds
- The Kingman bound for G/G/1
- Large deviations for hypothesis tests
- Sequential detection
- Tilted probabilities and proof of Wald's id.

Let a rv Z have an MGF $g_{Z}(r)$ for $0 \leq r<r_{+}$and mean $\bar{Z}<0$. By the Chernoff bound, for any $\alpha>0$ and any $r \in\left(0, r_{+}\right)$,

$$
\operatorname{Pr}\{Z \geq \alpha\} \leq g_{Z}(r) \exp (-r \alpha)=\exp \left(\gamma_{Z}(r)-r \alpha\right)
$$

where $\gamma_{Z}(r)=\ln g_{Z}(r)$. If Z is a sum $S_{n}=X_{1}+\cdots+X_{n}$, of IID rv's, then $\gamma_{S_{n}}(r)=n \gamma_{X}(r)$.

$$
\operatorname{Pr}\left\{S_{n} \geq n a\right\} \leq \min _{r}\left(\exp \left[n\left(\gamma_{X}(r)-r a\right)\right]\right) .
$$

This is exponential in n for fixed a (i.e., $\gamma^{\prime}(r)=a$). We are now interested in threshold crossings, i.e., $\operatorname{Pr}\left\{\bigcup_{n}\left(S_{n} \geq \alpha\right)\right\}$. As a preliminary step, we study how $\operatorname{Pr}\left\{S_{n} \geq \alpha\right\}$ varies with n for fixed α.

$$
\operatorname{Pr}\left\{S_{n} \geq \alpha\right\} \leq \min _{r}\left(\exp \left[n \gamma_{X}(r)-r \alpha\right]\right) .
$$

Here the minimizing r varies with n (i.e., $\gamma^{\prime}(r)=\alpha / n$).

$$
\operatorname{Pr}\left\{S_{n} \geq \alpha\right\} \leq \min _{0<r<r_{+}} \exp \left(-\alpha\left[r-\frac{n}{\alpha} \gamma_{X}(r)\right]\right)
$$

When n is very large, the slope $\frac{\alpha}{n}=\gamma_{X}^{\prime}\left(r_{0}\right)$ is close to 0 and the horizontal intercept (the negative exponent) is very large. As n decreases, the intercept decreases to r^{*} and then increases again.

Thus $\operatorname{Pr}\left\{\cup_{n}\left\{S_{n} \geq \alpha\right\}\right\} \approx \exp \left(-\alpha r^{*}\right)$, where the nature of the approximation will be explained in terms of the Wald identity.

Wald's identity with 2 thresholds

Consider a random walk $\left\{S_{n} ; n \geq 1\right\}$ with $S_{n}=X_{1}+\cdots+X_{n}$ and assume that X is not identically zero and has a semiinvariant MGF $\gamma(r)$ for $r \in\left(r_{-}, r_{+}\right)$with $r_{-}<0<r_{+}$. Let $\alpha>0$ and $\beta<0$ be two thresholds. Let J be the smallest n for which either $S_{n} \geq \alpha$ or $S_{n} \leq \beta$.

Note that J is a stopping trial, i.e., $\mathbb{I}_{J=n}$ is a function of S_{1}, \ldots, S_{n} and J is a rv. The fact that J is a $\mathbf{r v}$ is proved in Lemma 7.5.1, but is almost obvious.

Wald's identity now says that for any $r, r_{-}<r<r_{+}$,

$$
\mathrm{E}\left[\exp \left(r S_{J}-J \gamma(r)\right)\right]=1
$$

If we replace J by a fixed step n, this just says that $\mathrm{E}\left[\exp \left(r S_{n}\right)\right]=\exp (n \gamma(r))$, so this is not totally implausible.

$$
\mathrm{E}\left[\exp \left(r S_{J}-J \gamma(r)\right)\right]=1 \quad \text { (Wald's identity). }
$$

Before justifying this, we use it to bound the probability of crossing a threshold.

Corollary: Assume further that $\bar{X}<0$ and that $r^{*}>0$ exists such that $\gamma\left(r^{*}\right)=0$. Then

$$
\operatorname{Pr}\left\{S_{J} \geq \alpha\right\} \leq \exp \left(-r^{*} \alpha\right)
$$

Wald's id. at r^{*} is $\mathrm{E}\left[\exp \left(r^{*} S_{J}\right)\right]=1$. Since $\exp \left(r^{*} S_{J}\right) \geq 0$,

$$
\operatorname{Pr}\left\{S_{J} \geq \alpha\right\} \mathrm{E}\left[\exp \left(r^{*} S_{J}\right) \mid S_{J} \geq \alpha\right] \leq \mathrm{E}\left[\exp \left(r^{*} S_{J}\right)\right]=1
$$

For $S_{J} \geq \alpha$, we have $\exp \left(r^{*} S_{J}\right) \geq \exp \left(r^{*} \alpha\right)$. Thus

$$
\operatorname{Pr}\left\{S_{J} \geq \alpha\right\} \exp \left(r^{*} \alpha\right) \leq 1
$$

This is valid for all choices of $\beta<0$, so it turns out to be valid without a lower threshold, i.e., $\operatorname{Pr}\left\{\bigcup_{n}\left\{S_{n} \geq \alpha\right\}\right\} \leq$ $\exp \left(-r^{*} \alpha\right)$.

We saw before that $\operatorname{Pr}\left\{S_{n} \geq \alpha\right\} \leq \exp \left(-\alpha r^{*}\right)$ for all n, but this corollary makes the stronger and cleaner statement that $\operatorname{Pr}\left\{\cup_{n \geq 1}\left\{S_{n} \geq \alpha\right\}\right\} \leq \exp \left(-r^{*} \alpha\right)$

The Chernoff bound has the advantage of showing that the n for which the probability of threshold crossing is essentially highest is $n=\alpha / \gamma^{\prime}\left(r^{*}\right)$.

The corollary can be applied to the queueing time W_{i} for the i th arrival to a $\mathbf{G} / \mathrm{G} / \mathbf{1}$ system.

We let $U_{i}=X_{i}-Y_{i-1}$, i.e., U_{i} is the difference between the i th interarrival time and the previous service time.

Recall that we showed that $\left\{U_{i} ; i \geq 1\right\}$ is a modification of a random walk. The text shows that it is a random walk looking backward.

Letting $\gamma(r)$ be the semi-invariant MGF of each U_{i}, then the Kingman bound (the corollary to the Wald idenity for the $G / G / 1$ queue) says that for all $n \geq 1$,

$$
\operatorname{Pr}\left\{W_{n} \geq \alpha\right\} \leq \operatorname{Pr}\{W \geq \alpha\} \leq \exp \left(-r^{*} \alpha\right) ; \quad \text { for all } \alpha>0
$$

Large deviations for hypothesis tests

Let $\vec{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ be IID conditional on \mathbf{H}_{0} and also IID condtional on H_{1}. Then

$$
\begin{gathered}
\ln (\Lambda(\vec{y}))=\ln \frac{f\left(\vec{y} \mid \mathbf{H}_{0}\right)}{f\left(\vec{y} \mid \mathbf{H}_{1}\right)}=\sum_{i=1}^{n} \ln \frac{f\left(y_{i} \mid \mathbf{H}_{0}\right)}{f\left(y_{i} \mid \mathbf{H}_{1}\right)} \\
\text { Define } z_{i} \text { by } z_{i}=\ln \frac{f\left(y_{i} \mid \mathbf{H}_{0}\right)}{f\left(y_{i} \mid \mathbf{H}_{1}\right)}
\end{gathered}
$$

A threshold test compares $\sum_{i=1}^{n} z_{i}$ with $\ln (\eta)=\ln \left(p_{1} / p_{0}\right)$.
Conditional on \mathbf{H}_{1}, make error if $\sum_{i} Z_{i}^{1}>\ln (\eta)$ where Z_{i}^{1}, $1 \leq i \leq n$, are IID conditional on \mathbf{H}_{1}.

Exponential bound for $\sum_{i} Z_{i}^{1}$

$$
\begin{aligned}
\gamma_{1}(r) & =\ln \left\{\int f\left(y \mid \mathbf{H}_{1}\right) \exp \left[r \ln \frac{f\left(y \mid \mathbf{H}_{0}\right)}{f\left(y \mid \mathbf{H}_{1}\right)}\right] d y\right\} \\
& =\ln \left\{\int f^{1-r}\left(y \mid \mathbf{H}_{1}\right) f^{r}\left(y \mid \mathbf{H}_{0}\right) d y\right\}
\end{aligned}
$$

At $r=1$, this is $\ln \left(\int f\left(y \mid \mathbf{H}_{0}\right) d y\right)=0$.

$$
q_{1}(\eta) \leq \exp n\left[\gamma_{1}\left(r_{0}\right)-r_{0} \ln (\eta) / n\right]
$$

where $q_{\ell}(\eta)=\operatorname{Pr}\{e \mid H=\ell\}$

Exponential bound for $\sum_{i} Z_{i}^{0}$

$$
\begin{aligned}
\gamma_{0}(s) & =\ln \left\{\int f(y \mid 0) \exp \left[s \ln \frac{f\left(y \mid \mathbf{H}_{0}\right)}{f\left(y \mid \mathbf{H}_{1}\right)}\right] d y\right\} \\
& =\ln \left\{\int f^{-s}\left(y \mid \mathbf{H}_{1}\right) f^{1+s}\left(y \mid \mathbf{H}_{0}\right) d y\right\}
\end{aligned}
$$

At $s=-1$, this is $\ln \left(\int f\left(y \mid \mathbf{H}_{1}\right) d y\right)=0$. Note: $\gamma_{0}(s)=$ $\gamma_{1}(r-1)$.

$$
q_{0}(\eta) \leq \exp n\left[\gamma_{1}\left(r_{o}\right)+\left(1-r_{o}\right) \ln (\eta) / n\right]
$$

These are the exponents for the two kinds of errors. This can be viewed as a large deviation form of Neyman Pearson. Choose one exponent and the other is given by the inverted see-saw above.

The a priori probabilities are usually not the essential characteristic here, but the bound for MAP is obtimized at r such that $\ln (\eta) / n-\gamma_{0}^{\prime}(r)$

Sequential detection

This large-deviation hypothesis-testing problem screams out for a variable number of trials.

We have two coupled random walks, one based on \mathbf{H}_{0} and one on H_{1}.

We use two thresholds, $\alpha>0$ and $\beta<0$. Note that $\mathrm{E}\left[Z \mid \mathbf{H}_{0}\right]<0$ and $\mathrm{E}\left[Z \mid \mathbf{H}_{1}\right]>0$.

Thus crossing α is a rare event given the random walk with \mathbf{H}_{0} and crossing β is rare given \mathbf{H}_{1}.

Since $r^{*}=1$ for the \mathbf{H}_{0} walk, $\operatorname{Pr}\left\{e \mid \mathbf{H}_{0}\right\} \leq e^{-\alpha}$.
This is not surprising; for the simple RW with $p_{1}=1 / 2$, $\sum_{i} Z_{i}=\alpha$ means that

$$
\operatorname{In}\left[\operatorname{Pr}\left\{e \mid \mathbf{H}_{1}\right\} / \operatorname{Pr}\left\{e \mid \mathbf{H}_{0}\right\}=\alpha\right.
$$

Also, $\operatorname{Pr}\left\{e \mid \mathbf{H}_{1}\right\} \leq e^{\beta}$.

The coupling between errors given H_{1} and errors given H_{0} is weaker here than for fixed n.

Increasing α lowers $\operatorname{Pr}\left\{e \mid \mathbf{H}_{0}\right\}$ exponentially and increases $\mathrm{E}\left[J \mid \mathbf{H}_{1}\right] \approx \alpha / \mathrm{E}\left[Z \mid \mathbf{H}_{1}\right]$ (from Wald's equality since $\alpha \approx$ $\mathrm{E}\left[S_{J} \mid H=1\right]$). Thus

$$
\operatorname{Pr}\{e \mid H=0\} \sim \exp (-\mathrm{E}[J \mid H=1] \mathrm{E}[Z \mid H=1])
$$

In other words, $\operatorname{Pr}\{e \mid H=0\}$ is essentially exponential in the expected number of trials given $H=1$. The exponent is $\mathrm{E}[Z \mid H=1]$, illustrated below.

Similarly, $\operatorname{Pr}\{e \mid H=1\} \sim \exp (\mathrm{E}[J \mid H=0] \mathrm{E}[Z \mid H=0])$.

Tilted probabilities

Let $\left\{X_{n} ; n \geq 1\right\}$ be a sequence of IID discete rv's with a MGF at some given r. Given the PMF of X, define a tilted PMF (for X) as

$$
\mathrm{q}_{X, r}(x)=\mathrm{p}_{X}(x) \exp [r x-\gamma(r)]
$$

Summing over $x, \sum q_{X, r}(x)=g_{X}(r) e^{-\gamma_{X}(r)}=1$. We view $\mathrm{q}_{X, r}(x)$ as the PMF on X in a new probability space with this given relationship to the old space.

We can then use all the laws of probability in this new measure. In this new measure, $\left\{X_{n} ; n \geq 1\right\}$ are taken to be IID. The mean of X in this new space is

$$
\begin{aligned}
\mathrm{E}_{r}[X] & =\sum_{x} x \mathbf{q}_{X, r}(x)=\sum_{x} x \mathrm{p}_{X}(x) \exp [r x-\gamma(r)] \\
& =\frac{1}{g_{X}(r)} \sum_{x} \frac{d}{d r} \mathrm{p}_{X}(x) \exp [r x] \\
& =\frac{g_{X}^{\prime}(r)}{g_{X}(r)}=\gamma^{\prime}(r) .
\end{aligned}
$$

The joint tilted PMF for $\vec{X}^{n}=\left(X_{1}, \ldots, X_{n}\right)$ is then

$$
\mathrm{q}_{\vec{X}^{n}, r}\left(x_{1}, \ldots, x_{n}\right)=\mathrm{p}_{\vec{X}^{n}}\left(x_{1}, \ldots, x_{n}\right) \exp \left(\sum_{i=1}^{n}\left[r x_{i}-\gamma(r)\right] .\right.
$$

Let $A\left(s_{n}\right)$ be the set of n-tuples such that $x_{1}+\cdots x_{n}=s_{n}$. Then (in the original space) $\mathrm{p}_{S_{n}}\left(s_{n}\right)=\operatorname{Pr}\left\{S_{n}=s_{n}\right\}=\operatorname{Pr}\left\{A\left(s_{n}\right)\right\}$. Also, for each $\vec{x}^{n} \in A\left(s_{n}\right)$,

$$
\begin{aligned}
\mathrm{q}_{\vec{X}^{n}, r}\left(x_{1}, \ldots, x_{n}\right) & =\mathrm{p}_{\vec{X}^{n}}\left(x_{1}, \ldots, x_{n}\right) \exp \left(r s_{n}-n \gamma(r)\right] \\
\mathrm{q}_{S_{n}, r}\left(s_{n}\right) & =\mathfrak{p}_{S_{n}}\left(s_{n}\right) \exp \left[r s_{n}-n \gamma(r)\right],
\end{aligned}
$$

where we have summed over $A\left(s_{n}\right)$. This is the key to much of large deviation theory. For $r>0$, it tilts the probability measure on S_{n} toward large values, and the laws of large numbers can be used on this tilted measure.

Proof of Wald's identity

The stopping time J for the 2 threshold RW is a rv (from Lemma 7.5.1) and it is also a rv for the tilted probability measure. Let $\mathcal{T}_{n}=\left\{\vec{x}_{n}: s_{n} \notin(\beta, \alpha) ; s_{i} \in(\beta, \alpha) ; 1 \leq i<n\right\}$.

That is, \mathcal{I}_{n} is the set of n tuples for which stopping occurs on trial n. Letting $q_{J, r(n)}$ be the PMF of J in the tilted probability measure,

$$
\begin{aligned}
\mathrm{q}_{J, r}(n) & =\sum_{\vec{x}^{n} \in \mathcal{I}_{n}} \mathrm{q}_{\vec{X}^{n}, r}\left(\vec{x}^{n}\right)=\sum_{\vec{x}^{n} \in \mathcal{T}_{n}} \mathrm{p}_{\vec{X}^{n}}\left(\vec{x}^{n}\right) \exp \left[r s_{n}-n \gamma(r)\right] \\
& =\mathrm{E}\left[\exp \left[r S_{n}-n \gamma(r) \mid J=n\right] \operatorname{Pr}\{J=n\} .\right.
\end{aligned}
$$

Summing over n completes the proof.

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

