
Let a rv Z have an MGF gZ(r) for 0 ≤ r < r+ and mean 

Z < 0. By the Chernoff bound, for any α > 0 and any 

r ∈ (0, r+), 

Pr{Z ≥ α} ≤ gZ(r) exp(−rα) = exp(γZ(r) − rα) 

where γZ(r) = ln gZ(r). If Z is a sum Sn = X1 + · · · + Xn,

of IID rv’s, then γS (
n

r) = nγX(r). 

Pr{Sn ≥ na} ≤ min (exp[n(γX(r)  ra)]) . 
r 

−

This is exponential in n for fixed a (i.e., γ�(r) = a). We are 

now interested in threshold crossings, i.e., Pr{ n(Sn ≥ α)}. 
As a preliminary step, we study how Pr{Sn

�

 ≥ α} varies 

with n for fixed α. 

Pr{Sn ≥ α} ≤ min (exp[nγX(r) − rα]) . 
r 

Here the minimizing r varies with n (i.e., γ�(r) = α/n). 
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Pr Sn ≥ α} ≤ min exp −α r  

0
− γX(r)
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When n  is very large, the slope α = γ� (r
n X 0) is close to 0 

and the horizontal intercept (the negative exponent) is 

very large. As n decreases, the intercept decreases to r∗ 

and then increases again. 

Thus Pr{�
n{Sn ≥ α}} ≈ exp(−αr

∗), where the nature of 

the approximation will be explained in terms of the Wald 

identity. 
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Wald’s identity with 2 thresholds 

Consider a random walk {Sn; n ≥ 1} with Sn = X1+· · ·+Xn

and assume that X is not identically zero and has a semi-

invariant MGF γ(r) for r ∈ (r−, r+) with r  < 0 − < r+. Let 

α > 0 and β < 0 be two thresholds. Let J be the smallest 

n for which either Sn ≥ α or Sn ≤ β. 

Note that J is a stopping trial, i.e., IJ=n is a function of 

S1, . . . , Sn and J is a rv. The fact that J is a rv is proved 

in Lemma 7.5.1, but is almost obvious. 

Wald’s identity now says that for any r, r− < r < r+, 

E [exp(rSJ − Jγ(r))] = 1. 

If we replace J by a fixed step n, this just says that


E [exp(rSn)] = exp(nγ(r)), so this is not totally implausible.
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E [exp(rSJ − Jγ(r))] = 1 (Wald’s identity). 

Before justifying this, we use it to bound the probability 

of crossing a threshold. 

Corollary: Assume further that X < 0 and that r
∗ 

> 0 

exists such that γ(r∗) = 0. Then 

Pr{SJ ≥ α} ≤ exp(−r
∗
α). 

Wald’s id. at r∗ is E [exp(r∗SJ )] = 1. Since exp(r∗SJ ) ≥ 0, 

  
Pr{SJ ≥ α} E exp(r∗SJ ) | SJ ≥ α ≤ E exp(r∗SJ ) = 1. 

For SJ ≥ α, we have

�

 exp(r∗SJ ) 

� � �

≥ exp(r∗α). Thus 

Pr{SJ ≥ α} exp(r∗α) ≤ 1. 

This is valid for all choices of β < 0, so it turns out to 

be valid without a lower threshold, i.e., Pr{�
n{Sn ≥ α}} ≤ 

exp(−r
∗
α). 
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We saw before that Pr{Sn ≥ α} ≤ exp(−αr
∗) for all n, but 

this corolla� ry makes �the stronger and cleaner statement 

that Pr
�  

n 1{Sn ≥ α} ≤ exp( ∗
≥ −r α) 

The Chernoff bound has the advantage of showing that 

the n for which the probability of threshold crossing is 

essentially highest is n = α/γ
�(r∗). 
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The Kingman bound for G/G/1 

The corollary can be applied to the queueing time Wi for 

the ith arrival to a G/G/1 system. 

We let Ui = Xi − Yi 1, i.e., Ui is the difference between −
the ith interarrival time and the previous service time. 

Recall that we showed that {Ui; i ≥ 1} is a modification 

of a random walk. The text shows that it is a random 

walk looking backward. 

Letting γ(r) be the semi-invariant MGF of each Ui, then 

the Kingman bound (the corollary to the Wald idenity 

for the G/G/1 queue) says that for all n ≥ 1, 

Pr{Wn ≥ α} ≤ Pr{W ≥ α} ≤ exp(−r
∗
α) ; for all α > 0. 
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Large deviations for hypothesis tests 

Let Y� = (Y1, . . . , Yn) be IID conditional on H0 and also IID 

condtional on H1. Then 

(  | H ) n
f �y  � 0 f(y

ln(Λ(�y)) = ln = ln i | H0) 

f(�y | H1) f(yi | H1) 
i=1 

f(y   H0) 
Define zi by = i

zi  ln 
|

f(yi | H1) 

A threshold test compares 
�

n
 zi with ln(

i=1 η) = ln(p1/p0). 

Conditional on H 1 1 
1, make error if 

�
i Z  > ln(η) where Z  , i i

1 ≤ i ≤ n, are IID conditional on H1. 
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f
−r(y | H1)

r
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At r = 1, this is ln(
� 

f(y | H0) dy) = 0. 

q1(η) ≤ exp n [γ1(r0) − r0 ln(η)/n] 

where q�(η) = Pr{e | H = �} 
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At s = −1, this is ln(
�

f(y | H1) dy) = 0. Note: γ0(s) = 

γ1(r−1). 

q0(η) ≤ exp n [γ1(ro) + (1−ro) ln(η)/n] 
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0 r 1 

γ0(r)+ 
γ1(r) (1−r) ln(η)/n 

γ0(r) − r ln(η)/n 

These are the exponents for the two kinds of errors. 

This can be viewed as a large deviation form of Neyman 

Pearson. Choose one exponent and the other is given by 

the inverted see-saw above. 

The a priori probabilities are usually not the essential 

characteristic here, but the bound for MAP is obtimized 

at r such that ln(η)/n − γ0
� (r) 
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Sequential detection 

This large-deviation hypothesis-testing problem screams 

out for a variable number of trials. 

We have two coupled random walks, one based on H0 

and one on H1. 

We use two thresholds, α > 0 and β < 0. Note that 

E [Z | H0] < 0 and E [Z | H1] > 0. 

Thus crossing α is a rare event given the random walk 

with H0 and crossing β is rare given H1. 

Since r∗ = 1 for the H0 walk, Pr{e | H0} ≤ e−α . 

This is not surprising; for the simple RW with p1 = 1/2, 
�

i Zi = α means that 

ln[Pr{e | H1} /Pr{e | H0} = α 

Also, Pr{e | H1} ≤ eβ . 
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Tilted probabilities 

Let {Xn; n ≥ 1} be a sequence of IID discete rv’s with a 

MGF at some given r. Given the PMF of X, define a 

tilted PMF (for X) as 

qX,r(x) = pX(x) exp[rx − γ(r)]. 

Summing over , 
� 

( ) = ( ) −γX( )
x qX,r x gX r e

r = 1. We view 

qX,r(x) as the PMF on X in a new probability space with 

this given relationship to the old space. 

We can then use all the laws of probability in this new 

measure. In this new measure, {Xn; n ≥ 1} are taken to 

be IID. The mean of X in this new space is 
  

Er[X] = 
�

xqX,r(x) = 
�

xpX(x) exp[rx − γ(r)] 
x  
1 

=
�

x

 d 
p

 X(x) exp[rx] 
gX(r) x dr

g
X
� (r)

= = γ�(r). 
gX(r) 
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The coupling between errors given H1 and errors given 

H0 is weaker here than for fixed n. 

Increasing α lowers Pr{e | H0} exponentially and increases 

E [J | H1] ≈ α/E [Z | H1] (from Wald’s equality since α ≈ 

E [SJ | H = 1]). Thus 

Pr{e | H=0} ∼ exp(−E [J | H=1] E [Z | H=1]) 

In other words, Pr{e | H=0} is essentially exponential in 

the expected number of trials given H=1. The exponent 

is E [Z | H=1], illustrated below. 

Similarly, Pr{e | H=1} ∼ exp(E [J | H=0] E [Z | H=0]). 
0 r 1
❍ ✟❍ ✟❍ ✟❍ ✟❍ ✟❍ ✟❍ ✟❍ ✟❍ ✟❍ ✟❍ ✟❍ ✟❍ ✟❍ ✟❍ ✟❍✟ γ0(r) 

✟ ❍✟ ❍✟ ❍✟ ❍✟ ❍✟ ❍✟ ❍✟ ❍✟ ❍✟ ❍✟ ❍✟ ❍✟ ❍✟ ❍✟✟ ❍❍−E [Z | H=1] E [Z | H=0] 
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The joint tilted PMF for X� n = (X1, . . . , Xn) is then 

n  
q � n (x1, . . . , xn) = p ,
X � n(x1 . . . , xn) exp( 

,r X
i

�
[rxi − γ(r)]. 

=1 

Let A(sn) be the set of n-tuples such that x1+ · · · xn = sn.

Then (in the original space) pS (
n

sn) = Pr{Sn = sn} =Pr{A(sn)
n

}. 
Also, for each  

�x ∈ A(sn), 

q � n (x1, . . . , xn) = p � n
(x1, . . . , xn) exp(rsn 
,r

− nγ(r)]
X X

qS ,r(sn) = pS (sn) exp[  
n n

rsn − nγ(r)],


where we have summed over A(sn). This is the key to 

much of large deviation theory. For r > 0, it tilts the 

probability measure on Sn toward large values, and the 

laws of large numbers can be used on this tilted measure. 
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Proof of Wald’s identity 

The stopping time J for the 2 threshold RW is a rv (from 

Lemma 7.5.1) and it is also a rv for the tilted probability 

measure. Let Tn = {�xn : sn ∈/ (β, α); si ∈ (β, α); 1 ≤ i < n}. 

That is, Tn is the set of n tuples for which stopping occurs 

on trial n. Letting q ( ) be the PMF of J in the tilted 
J,r n

probability measure, 
  

qJ,r(
n n

n) = 
�

q (�x ) = 
n

p 
n
(�x ) exp[rsn  nγ(r)]

X� ,r

�
X�

�xn

−
∈Tn �xn∈Tn 

= E [exp[rSn − nγ(r) | J=n] Pr{J = n} . 

Summing over n completes the proof. 

16 



MIT OpenCourseWare
http://ocw.mit.edu 

6.262 Discrete Stochastic Processes 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

