6.262: Discrete Stochastic Processes 5/2/11

L22: Random Walks and thresholds

Outline:

- Review of Chernoff bounds
- Wald's identity with 2 thresholds
- The Kingman bound for G/G/1
- Large deviations for hypothesis tests
- Sequential detection
- Tilted probabilities and proof of Wald's id.

1

Let a rv Z have an MGF $g_Z(r)$ for $0 \le r < r_+$ and mean $\overline{Z} < 0$. By the Chernoff bound, for any $\alpha > 0$ and any $r \in (0, r_+)$,

$$\Pr\{Z \ge \alpha\} \le g_Z(r) \exp(-r\alpha) = \exp(\gamma_Z(r) - r\alpha)$$

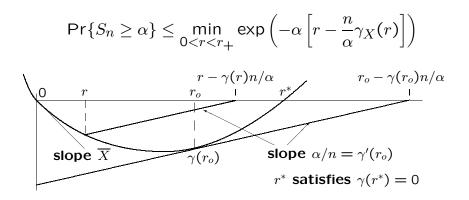
where $\gamma_Z(r) = \ln g_Z(r)$. If Z is a sum $S_n = X_1 + \cdots + X_n$, of IID rv's, then $\gamma_{S_n}(r) = n\gamma_X(r)$.

$$\Pr\{S_n \ge na\} \le \min_r \left(\exp[n(\gamma_X(r) - ra)]\right).$$

This is exponential in n for fixed a (i.e., $\gamma'(r) = a$). We are now interested in threshold crossings, i.e., $\Pr\{\bigcup_n (S_n \ge \alpha)\}$. As a preliminary step, we study how $\Pr\{S_n \ge \alpha\}$ varies with n for fixed α .

$$\Pr\{S_n \ge \alpha\} \le \min_r (\exp[n\gamma_X(r) - r\alpha]).$$

Here the minimizing r varies with n (i.e., $\gamma'(r) = \alpha/n$).



When *n* is very large, the slope $\frac{\alpha}{n} = \gamma'_X(r_0)$ is close to 0 and the horizontal intercept (the negative exponent) is very large. As *n* decreases, the intercept decreases to r^* and then increases again.

Thus $\Pr{\{\bigcup_n \{S_n \ge \alpha\}}\} \approx \exp(-\alpha r^*)$, where the nature of the approximation will be explained in terms of the Wald identity.

3

Wald's identity with 2 thresholds

Consider a random walk $\{S_n; n \ge 1\}$ with $S_n = X_1 + \cdots + X_n$ and assume that X is not identically zero and has a semiinvariant MGF $\gamma(r)$ for $r \in (r_-, r_+)$ with $r_- < 0 < r_+$. Let $\alpha > 0$ and $\beta < 0$ be two thresholds. Let J be the smallest n for which either $S_n \ge \alpha$ or $S_n \le \beta$.

Note that J is a stopping trial, i.e., $\mathbb{I}_{J=n}$ is a function of S_1, \ldots, S_n and J is a rv. The fact that J is a rv is proved in Lemma 7.5.1, but is almost obvious.

Wald's identity now says that for any r, $r_{-} < r < r_{+}$,

 $\mathsf{E}\left[\exp(rS_J - J\gamma(r))\right] = 1.$

If we replace J by a fixed step n, this just says that $E[\exp(rS_n)] = \exp(n\gamma(r))$, so this is not totally implausible.

$$E[\exp(rS_J - J\gamma(r))] = 1$$
 (Wald's identity).

Before justifying this, we use it to bound the probability of crossing a threshold.

Corollary: Assume further that $\overline{X} < 0$ and that $r^* > 0$ exists such that $\gamma(r^*) = 0$. Then

$$\Pr\{S_J \ge \alpha\} \le \exp(-r^*\alpha).$$

Wald's id. at r^* is $E[exp(r^*S_J)] = 1$. Since $exp(r^*S_J) \ge 0$,

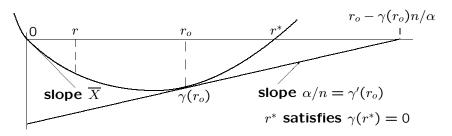
$$\Pr\{S_J \ge \alpha\} \operatorname{\mathsf{E}} \left[\exp(r^* S_J) \mid S_J \ge \alpha \right] \le \operatorname{\mathsf{E}} \left[\exp(r^* S_J) \right] = 1.$$

For $S_J \ge \alpha$, we have $\exp(r^*S_J) \ge \exp(r^*\alpha)$. Thus

 $\Pr\{S_J \ge \alpha\} \exp(r^* \alpha) \le 1.$

This is valid for all choices of $\beta < 0$, so it turns out to be valid without a lower threshold, i.e., $\Pr\{\bigcup_n \{S_n \ge \alpha\}\} \le \exp(-r^*\alpha)$.

We saw before that $\Pr\{S_n \ge \alpha\} \le \exp(-\alpha r^*)$ for all n, but this corollary makes the stronger and cleaner statement that $\Pr\{\bigcup_{n\ge 1}\{S_n\ge \alpha\}\} \le \exp(-r^*\alpha)$



The Chernoff bound has the advantage of showing that the *n* for which the probability of threshold crossing is essentially highest is $n = \alpha/\gamma'(r^*)$.

The corollary can be applied to the queueing time W_i for the *i*th arrival to a G/G/1 system.

We let $U_i = X_i - Y_{i-1}$, i.e., U_i is the difference between the *i*th interarrival time and the previous service time.

Recall that we showed that $\{U_i; i \ge 1\}$ is a modification of a random walk. The text shows that it is a random walk looking backward.

Letting $\gamma(r)$ be the semi-invariant MGF of each U_i , then the Kingman bound (the corollary to the Wald idenity for the G/G/1 queue) says that for all $n \ge 1$,

$$\Pr\{W_n \ge \alpha\} \le \Pr\{W \ge \alpha\} \le \exp(-r^*\alpha);$$
 for all $\alpha > 0$.

Large deviations for hypothesis tests

Let $\vec{Y} = (Y_1, \dots, Y_n)$ be IID conditional on H_0 and also IID conditional on H_1 . Then

$$\ln(\Lambda(\vec{y})) = \ln \frac{f(\vec{y} \mid \mathbf{H}_0)}{f(\vec{y} \mid \mathbf{H}_1)} = \sum_{i=1}^n \ln \frac{f(y_i \mid \mathbf{H}_0)}{f(y_i \mid \mathbf{H}_1)}$$

Define
$$z_i$$
 by $z_i = \ln \frac{f(y_i \mid \mathbf{H}_0)}{f(y_i \mid \mathbf{H}_1)}$

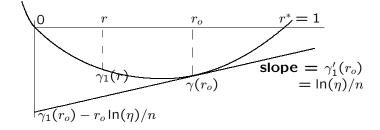
A threshold test compares $\sum_{i=1}^{n} z_i$ with $\ln(\eta) = \ln(p_1/p_0)$.

Conditional on H₁, make error if $\sum_i Z_i^1 > \ln(\eta)$ where Z_i^1 , $1 \le i \le n$, are IID conditional on H₁.

Exponential bound for $\sum_i Z_i^1$

$$\gamma_1(r) = \ln \left\{ \int f(y \mid \mathbf{H}_1) \exp \left[r \ln \frac{f(y \mid \mathbf{H}_0)}{f(y \mid \mathbf{H}_1)} \right] dy \right\}$$
$$= \ln \left\{ \int f^{1-r}(y \mid \mathbf{H}_1) f^r(y \mid \mathbf{H}_0) dy \right\}$$

At r = 1, this is $\ln(\int f(y \mid \mathbf{H}_0) dy) = 0$.



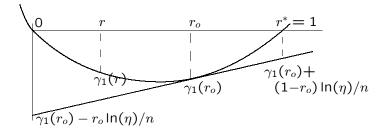
$$q_1(\eta) \le \exp n \left[\gamma_1(r_0) - r_0 \ln(\eta)/n\right]$$

where $q_\ell(\eta) = \Pr\{e \mid H = \ell\}$

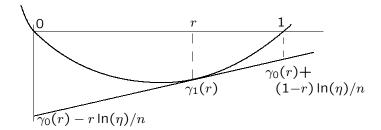
Exponential bound for $\sum_i Z_i^0$

$$\gamma_0(s) = \ln\left\{\int f(y\mid 0) \exp\left[s \ln \frac{f(y\mid \mathbf{H}_0)}{f(y\mid \mathbf{H}_1)}\right] dy\right\}$$
$$= \ln\left\{\int f^{-s}(y\mid \mathbf{H}_1) f^{1+s}(y\mid \mathbf{H}_0) dy\right\}$$

At s = -1, this is $\ln(\int f(y | \mathbf{H}_1) dy) = 0$. Note: $\gamma_0(s) = \gamma_1(r-1)$.



 $q_0(\eta) \leq \exp n \left[\gamma_1(r_o) + (1 - r_o) \ln(\eta) / n \right]$



These are the exponents for the two kinds of errors. This can be viewed as a large deviation form of Neyman Pearson. Choose one exponent and the other is given by the inverted see-saw above.

The a priori probabilities are usually not the essential characteristic here, but the bound for MAP is obtimized at r such that $\ln(\eta)/n - \gamma'_0(r)$

11

Sequential detection

This large-deviation hypothesis-testing problem screams out for a variable number of trials.

We have two coupled random walks, one based on H_0 and one on H_1 .

We use two thresholds, $\alpha > 0$ and $\beta < 0$. Note that $E[Z | H_0] < 0$ and $E[Z | H_1] > 0$.

Thus crossing α is a rare event given the random walk with H₀ and crossing β is rare given H₁.

Since $r^* = 1$ for the H₀ walk, $\Pr\{e \mid H_0\} \le e^{-\alpha}$.

This is not surprising; for the simple RW with $p_1 = 1/2$, $\sum_i Z_i = \alpha$ means that

$$\ln[\Pr\{e \mid \mathbf{H}_1\} / \Pr\{e \mid \mathbf{H}_0\} = \alpha$$

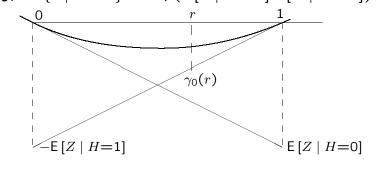
Also, $\Pr\{e \mid \mathbf{H}_1\} \leq e^{\beta}$.

The coupling between errors given H_1 and errors given H_0 is weaker here than for fixed n.

Increasing α lowers $\Pr\{e \mid H_0\}$ exponentially and increases $E[J \mid H_1] \approx \alpha/E[Z \mid H_1]$ (from Wald's equality since $\alpha \approx E[S_J \mid H = 1]$). Thus

$$\Pr\{e \mid H=0\} \sim \exp(-E[J \mid H=1]E[Z \mid H=1])$$

In other words, $Pr\{e \mid H=0\}$ is essentially exponential in the expected number of trials given H=1. The exponent is $E[Z \mid H=1]$, illustrated below.



Tilted probabilities

Let $\{X_n; n \ge 1\}$ be a sequence of IID discete rv's with a MGF at some given r. Given the PMF of X, define a tilted PMF (for X) as

$$q_{X,r}(x) = p_X(x) \exp[rx - \gamma(r)].$$

Summing over x, $\sum q_{X,r}(x) = g_X(r)e^{-\gamma_X(r)} = 1$. We view $q_{X,r}(x)$ as the PMF on X in a new probability space with this given relationship to the old space.

We can then use all the laws of probability in this new measure. In this new measure, $\{X_n; n \ge 1\}$ are taken to be IID. The mean of X in this new space is

$$E_r[X] = \sum_x x q_{X,r}(x) = \sum_x x p_X(x) \exp[rx - \gamma(r)]$$

= $\frac{1}{g_X(r)} \sum_x \frac{d}{dr} p_X(x) \exp[rx]$
= $\frac{g'_X(r)}{g_X(r)} = \gamma'(r).$

13

The joint tilted PMF for $\vec{X}^n = (X_1, \dots, X_n)$ is then

$$\mathsf{q}_{\vec{X}^n,r}(x_1,\ldots,x_n) = \mathsf{p}_{\vec{X}^n}(x_1,\ldots,x_n) \exp(\sum_{i=1}^n [rx_i - \gamma(r)]$$

Let $A(s_n)$ be the set of *n*-tuples such that $x_1 + \cdots + x_n = s_n$. Then (in the original space) $p_{S_n}(s_n) = \Pr\{S_n = s_n\} = \Pr\{A(s_n)\}$. Also, for each $\vec{x}^n \in A(s_n)$,

$$q_{\vec{X}^n,r}(x_1,\ldots,x_n) = p_{\vec{X}^n}(x_1,\ldots,x_n) \exp(rs_n - n\gamma(r)]$$

$$q_{S_n,r}(s_n) = p_{S_n}(s_n) \exp[rs_n - n\gamma(r)],$$

where we have summed over $A(s_n)$. This is the key to much of large deviation theory. For r > 0, it tilts the probability measure on S_n toward large values, and the laws of large numbers can be used on this tilted measure.

15

Proof of Wald's identity

The stopping time *J* for the 2 threshold RW is a rv (from Lemma 7.5.1) and it is also a rv for the tilted probability measure. Let $T_n = \{\vec{x}_n : s_n \notin (\beta, \alpha); s_i \in (\beta, \alpha); 1 \le i < n\}.$

That is, T_n is the set of n tuples for which stopping occurs on trial n. Letting $q_{J,r(n)}$ be the PMF of J in the tilted probability measure,

$$q_{J,r}(n) = \sum_{\vec{x}^n \in \mathcal{T}_n} q_{\vec{x}^n,r}(\vec{x}^n) = \sum_{\vec{x}^n \in \mathcal{T}_n} p_{\vec{x}^n}(\vec{x}^n) \exp[rs_n - n\gamma(r)]$$

= $\mathbb{E}[\exp[rS_n - n\gamma(r) \mid J=n] \operatorname{Pr}\{J=n\}.$

Summing over n completes the proof.

6.262 Discrete Stochastic Processes Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.