6.262: Discrete Stochastic Processes 5/4/11

L23: Martingales, plain, sub, and super

Outline:

- Review of Wald and sequential tests
- Wald's identity with zero-mean rv's
- Martingales
- Simple Examples of martingales
- Sub and super martingales

Thm: (Wald) Let $\left\{X_{i} ; i \geq 1\right\}$ be IID with a semi-invariant MGF $\gamma(r)=\ln (\mathrm{E}[\exp (r X)])$ that exists for $\left(r_{-}<0<r_{+}\right)$. Let $\left\{S_{n} ; n \geq 1\right.$ be the RW with $S_{n}=X_{1}+\cdots+X_{n}$. If J is the trial at which S_{n} first crosses $\alpha>0$ or $\beta<0$,

$$
\mathrm{E}\left[\exp \left(r S_{J}-J \gamma(r)\right]=1 \quad \text { for } r \in\left(r_{-}, r_{+}\right)\right.
$$

Corollary: If $\bar{X}<0$ and $\gamma\left(r^{*}\right)=0$ for $0<r^{*}$, then

$$
\operatorname{Pr}\left\{S_{J} \geq \alpha\right\} \leq \exp \left(-\alpha r^{*}\right)
$$

Pf: The Wald identity says $\mathrm{E}\left[\exp \left(r^{*} S_{J}\right]=1\right.$, so this follows from the Markov inequality.

This is valid for all lower thresholds and also for no lower threshold, where it is better stated as

$$
\operatorname{Pr}\left\{\bigcup_{n}\left\{S_{n} \geq \alpha\right\}\right\} \leq \exp \left(-r^{*} \alpha\right)
$$

This is stronger (for the case of threshold crossing) than the Chernoff bound, which says that $\operatorname{Pr}\left\{S_{n} \geq \alpha\right\} \leq \exp -r^{*} \alpha$ for all n.

Review of hypothesis testing: View a binary hypothesis as a binary rv H with $\mathrm{p}_{H}(0)=p_{0}$ and $\mathrm{p}_{H}(1)=p_{1}$.

We observe $\left\{Y_{n} ; n \geq 1\right\}$, which, conditional on $H=\ell$ is IID with density $\mathrm{f}_{Y \mid H}(y \mid \ell)$. Define the likelihood ratio

$$
\begin{gathered}
\wedge\left(\vec{y}^{n}\right)=\prod_{i=1}^{n} \frac{\mathrm{f}_{Y_{i} \mid H}\left(y_{i} \mid 0\right)}{\mathrm{f}_{Y_{i} \mid H}\left(y_{i} \mid 1\right)} \\
\frac{\operatorname{Pr}\left\{H=0 \mid \vec{y}^{n}\right\}}{\operatorname{Pr}\left\{H=1 \mid \vec{y}^{n}\right\}}=\frac{p_{0} f_{\vec{Y}^{n} \mid H}\left(\vec{y}^{n} \mid 0\right)}{p_{1} f_{\vec{Y}^{n} \mid H}\left(\vec{y}^{n} \mid 1\right)}=\frac{p_{0}}{p_{1}} \Lambda\left(\vec{y}^{n}\right)
\end{gathered}
$$

MAP rule: $\quad \Lambda\left(\vec{y}^{n}\right) \begin{cases}>p_{1} / p_{0} & ; \\ \leq p_{1} / p_{0} & \text { select } \hat{h}=0 \\ \text { select } \hat{h}=1 .\end{cases}$

Define the log likelihood ratio as

$$
\begin{gathered}
L L R=\ln \left[\Lambda\left(\vec{y}^{n}\right)\right]=\sum_{i=1}^{n} \ln \frac{\mathrm{f}_{Y_{i} \mid H}\left(y_{i} \mid 0\right)}{\mathrm{f}_{Y_{i} \mid H}\left(y_{i} \mid 1\right)} \\
s_{n}=\sum_{i=1}^{n} z_{i} \quad \text { where } z_{i}=\ln \frac{\mathrm{f}_{Y_{i} \mid H}\left(y_{i} \mid 0\right)}{f_{Y_{i} \mid H}\left(y_{i} \mid 1\right)}
\end{gathered}
$$

Conditional on $H=1,\left\{S_{n} ; n \geq 1\right\}$ is a RW with $S_{n}=$ $Z_{1}+\cdots Z_{n}$, where each Z_{i} is a function of Y_{i}. The Z_{i}, given $H=1$ are then IID.

$$
\begin{aligned}
\gamma_{1}(r) & =\ln \left\{\int \mathrm{f}_{Y_{i} \mid H}\left(y_{i} \mid 1\right) \exp \left[r \ln \frac{\mathrm{f}_{Y_{i} \mid H}\left(y_{i} \mid 0\right)}{\mathrm{f}_{Y_{i} \mid H}\left(y_{i} \mid 1\right)}\right] d y\right\} \\
& =\ln \left\{\int \mathrm{f}_{Y_{i} \mid H}^{1-r}\left(y_{i} \mid 1\right) \mathrm{f}_{Y_{i} \mid H}^{r}\left(y_{i} \mid 0\right) d y\right\}
\end{aligned}
$$

Note that $\gamma_{1}(1)=0$, so $r^{*}=1$.

For fixed n, a threshold rule says choose $\hat{H}=0$ if $S_{n} \geq \ln \eta$. Thus, given $H=1$, an error occurs if $S_{n} \geq \ln \eta$. From the Chernoff bound,

$$
\operatorname{Pr}\{e \mid H=1\} \leq \exp \left(n \gamma_{1}\left(r_{o}\right)-r_{o} \ln \eta\right)
$$

Given $H=0$, a similar argument shows that

$$
\operatorname{Pr}\{e \mid H=0\} \leq \exp \left(n \gamma_{1}\left(r_{o}\right)+\left(1-r_{o}\right) \ln \eta\right)
$$

A better strategy is sequential decisions. For the same pair of RW's, continue trials until either $S_{n} \geq \alpha$ or $S_{n} \leq \beta$ where $\alpha>0$ and $\beta<0$.

Given $H=1,\left\{S_{n} ; n \geq 1\right\}$ is a random walk. Choose some $\alpha>0$ and $\beta<0$ and let J be a stopping time, stopping when first $S_{n} \geq \alpha$ or $S_{n} \leq \beta$.

If $S_{J} \geq \alpha$, decide $\hat{H}=0$ and if $S_{J} \leq \beta$, decide $\hat{H}=1$. Conditional on $H=1$, an error is made if $S_{J} \geq \alpha$. Then

$$
\operatorname{Pr}\{e \mid H=1\}=\operatorname{Pr}\left\{S_{J} \geq \alpha \mid H=1\right\} \leq \exp \left[-\alpha r^{*}\right]
$$

where r^{*} is the root of $\gamma(r)=\ln \mathrm{E}[\exp (r Z) \mid H=1]$, i.e., $r^{*}=1$.

$$
\begin{aligned}
\gamma(r) & =\ln \int_{y} f_{Y \mid H}(y \mid 1) \exp \left[r \ln \left(\frac{f_{Y \mid H}(y \mid 0)}{f_{Y \mid H}(y \mid 1)}\right)\right] \\
& =\ln \int_{y}\left[f_{Y \mid H}(y \mid 1)\right]^{1-r}\left[f_{Y \mid H}(y \mid 0)\right]^{r} d y
\end{aligned}
$$

Choose apriori's $p_{0}=p_{1}$. Then at the end of trial n

$$
\begin{gathered}
\frac{\operatorname{Pr}\left\{H=0 \mid S_{n}\right\}}{\operatorname{Pr}\left\{H=1 \mid S_{n}\right\}}=\exp \left(S_{n}\right) ; \quad \frac{1-\operatorname{Pr}\left\{H=1 \mid S_{n}\right\}}{\operatorname{Pr}\left\{H=1 \mid S_{n}\right\}}=\exp \left(S_{n}\right) \\
\operatorname{Pr}\left\{H=1 \mid S_{n}\right\}=\frac{\exp \left(-S_{n}\right)}{1+\exp \left(-S_{n}\right)}
\end{gathered}
$$

This is the probability of error if a decision $\widehat{h}=0$ is made at the end of trial n. Thus deciding $\widehat{h}=0$ on crossing α guarantees that $\operatorname{Pr}\{e \mid H=1\} \leq \exp -\alpha$.

As we saw last time, the cost of choosing α to be large is many trials under $H=0$. In particular, the stopping time J satisfies

$$
\mathrm{E}[J \mid H=0]=\frac{\mathrm{E}\left[S_{J} \mid H=0\right]}{\mathrm{E}[Z \mid H=0]} \approx \frac{\alpha+\mathrm{E}[\text { overshoot } \mid H=0]}{\mathrm{E}[Z \mid H=0]}
$$

Wald's identity with zero-mean rv's

If we take the first 2 derivatives of Wald's identity at $r=0$, we get Wald's equality and a useful result for zero-mean rv's.

$$
\begin{aligned}
& \frac{d}{d r} \mathrm{E}\left[\exp \left(r S_{J}-J \gamma(r)\right]=\mathrm{E}\left[\left[S_{J}-J \gamma^{\prime}(r)\right] \exp \left(r S_{J}-J \gamma(r)\right)\right]\right. \\
& \frac{d}{d r} \mathrm{E}\left[\left.\exp \left(r S_{J}-J \gamma(r)\right]\right|_{r=0}=\mathrm{E}\left[S_{J}-J \bar{X}\right]=0 ; \quad\right. \text { (Wald eq.) } \\
& \frac{d^{2}}{d r^{2}} \mathrm{E}\left[\left.\exp \left(r S_{J}-J \gamma(r)\right]\right|_{r=0}=\mathrm{E}\left[S_{J}^{2}-\sigma_{X}^{2} \bar{J}\right]=0 ; \quad \text { if } \bar{X}=0\right.
\end{aligned}
$$

For zero-mean simple RW with threshold at $\alpha>0$ and $\beta<0$, we have $\bar{J}=-\beta \alpha$

Martingales

A sequence $\left\{Z_{n} ; n \geq 1\right\}$ of $r v$'s is a martingale if $\mathrm{E}\left[\left|Z_{n}\right|\right]<\infty$ for all $n \geq 1$ and

$$
\begin{equation*}
\mathrm{E}\left[Z_{n} \mid Z_{n-1}, Z_{n-2}, \ldots, Z_{1}\right]=Z_{n-1} \tag{1}
\end{equation*}
$$

The condition $\mathrm{E}\left[\left|Z_{n}\right|\right]<\infty$ is almost a mathematical fine point, and we mostly ignore it here. The condition (1) appears to be a very weak condition, but it leads to surprising applications. In times of doubt, write (1) as

$$
\mathrm{E}\left[Z_{n} \mid Z_{n-1}=z_{n-1}, \ldots, Z_{1}=z_{1}\right]=z_{n-1}
$$

for all sample values $z_{n-1}, z_{n-2}, \ldots, z_{1}$

Lemma: For a martingale, $\left\{Z_{n} ; n \geq 1\right\}$, and for $n>i \geq 1$,

$$
\mathrm{E}\left[Z_{n} \mid Z_{i}, Z_{i-1} \ldots, Z_{1}\right]=Z_{i}
$$

Pf: To start, we show that $\mathrm{E}\left[Z_{3} \mid Z_{1}\right]=Z_{1}$. Recall the meaning of $\mathrm{E}[X]=\mathrm{E}[\mathrm{E}[X \mid Y]]$. Then

$$
\mathrm{E}\left[Z_{3} \mid Z_{1}\right]=\mathrm{E}\left[\mathrm{E}\left[Z_{3} \mid Z_{2}, Z_{1}\right] \mid Z_{1}\right]
$$

$$
\mathrm{E}\left[Z_{3} \mid Z_{1}\right]=\mathrm{E}\left[\mathrm{E}\left[Z_{3} \mid Z_{2}, Z_{1}\right] \mid Z_{1}\right]=\mathrm{E}\left[Z_{2} \mid Z_{1}\right]=Z_{1}
$$

In the same way,

$$
\begin{aligned}
\mathrm{E}\left[Z_{i+2} \mid Z_{i}, \ldots, Z_{1}\right] & =\mathrm{E}\left[\mathrm{E}\left[Z_{i+2} \mid Z_{i+1}, \ldots, Z_{1}\right] \mid Z_{i}, \ldots, Z_{1}\right] \\
& =\mathrm{E}\left[Z_{i+1} \mid Z_{i}, \ldots, Z_{1}\right]=Z_{i}
\end{aligned}
$$

After more of the same, $\mathrm{E}\left[Z_{n} \mid Z_{i}, \ldots, Z_{1}\right]=Z_{i}$.

The most important special case is $\mathrm{E}\left[Z_{n} \mid Z_{1}\right]=Z_{1}$, and thus $\mathrm{E}\left[Z_{n}\right]=\mathrm{E}\left[Z_{1}\right]$.

Simple Examples of martingales

1) Zero-mean random walk: Let $Z_{n}=X_{1}+\cdots X_{n}$ where $\left\{X_{i} ; i \geq 1\right\}$ are IID and zero mean.

$$
\begin{aligned}
\mathrm{E}\left[Z_{n} \mid Z_{n-1}, \ldots, Z_{1}\right] & =\mathrm{E}\left[X_{n}+Z_{n-1} \mid Z_{n-1}, \ldots, Z_{1}\right] \\
& =\mathrm{E}\left[X_{n}\right]+Z_{n-1}=Z_{n-1} .
\end{aligned}
$$

2) Sums of 'arbitrary' dependent rv's: Suppose $\left\{X_{i} ; i \geq 1\right\}$ satisfy $\mathrm{E}\left[X_{i} \mid X_{i-1}, X_{i-2}, \ldots, X_{1}\right]=0$. Then $\left\{Z_{n} ; n \geq 1\right\}$ where $Z_{n}=X_{1}+\cdots+X_{n}$ is a martingale.

This can be taken as an alternate definition of a martingale. We can either start with the sums Z_{n} or with the differences between successive sums.
3) Let $X_{i}=U_{i} Y_{i}$ where $\left\{U_{i} ; i \geq 1\right\}$ are IID, equiprobable ± 1. The Y_{i} are non-negative and independent of the U_{i} but otherwise arbitrary. Then

$$
\mathrm{E}\left[X_{n} \mid X_{n-1}, \ldots, X_{1}\right]=0
$$

Thus $\left\{Z_{n} ; n \geq 1\right\}$ where $Z_{n}=X_{1}+\cdots X_{n}$ is a martingale.
4) Product form martingales. Suppose $\left\{X_{i} ; i \geq 1\right\}$ is a sequence of IID unit-mean rv's. Then $\left\{Z_{n} ; n \geq 1\right\}$ where $Z_{n}=X_{1} X_{2} \cdots X_{n}$ is a martingale.

$$
\begin{aligned}
\mathrm{E}\left[Z_{n} \mid Z_{n-1}, \ldots, Z_{1}\right] & =\mathrm{E}\left[X_{n} Z_{n-1} \mid Z_{n-1}, \ldots, Z_{1}\right] \\
& =\mathrm{E}\left[X_{n}\right] \mathrm{E}\left[Z_{n-1} \mid Z_{n-1}, \ldots, Z_{1}\right] \\
& =\mathrm{E}\left[Z_{n-1} \mid Z_{n-1}\right]=Z_{n-1} .
\end{aligned}
$$

5) Special case of product form martingale: let X_{i} be IID and equiprobably 2 or 0.

$$
\operatorname{Pr}\left\{Z_{n}=2^{n}\right\}=2^{-n} ; \quad \operatorname{Pr}\left\{Z_{n}=0\right\}=1-2^{-n} ; \quad \mathrm{E}\left[Z_{n}\right]=1
$$

Thus $\lim _{n} Z_{n}=0$ WP1 but $\mathrm{E}\left[Z_{n}\right]=1$ for all n
6) Recall the branching process where X_{n} is the number of elements in gen n and $X_{n+1}=\sum_{i=1}^{X_{n}} Y_{i, n}$ where the $Y_{i, n}$ are IID.

Let $Z_{n}=X_{n} / \bar{Y}^{n}$, i.e., $\left\{Z_{n} ; n \geq 1\right\}$ is a scaled down branching process.
$\mathrm{E}\left[Z_{n} \mid Z_{n-1}, \ldots, Z_{1}\right]=\mathrm{E}\left[\left.\frac{X_{n}}{\bar{Y}^{n}} \right\rvert\, X_{n-1}, \ldots, X_{1}\right]=\frac{\bar{Y} X_{n-1}}{\bar{Y}^{n}}=Z_{n-1}$.
Thus this is a martingale.

Submartingales and supermartingales

These are sequences $\left\{Z_{n} ; n \geq 1\right\}$ with $\mathrm{E}\left[\left|Z_{n}\right|\right]<\infty$ like martingales, but with inequalities instead of equalities. For all $n \geq 1$,

$$
\begin{array}{ll}
\mathrm{E}\left[Z_{n} \mid Z_{n-1}, \ldots, Z_{1}\right] \geq Z_{n-1} & \text { submartingale } \\
\mathrm{E}\left[Z_{n} \mid Z_{n-1}, \ldots, Z_{1}\right] \leq Z_{n-1} & \text { supermartingale }
\end{array}
$$

We refer only to submartingales in what follows, since the supermartingale case results from replacing Z_{n} with $-Z_{n}$.

For submartingales,

$$
\begin{gathered}
\mathrm{E}\left[Z_{n} \mid Z_{i}, \ldots, Z_{1}\right] \geq Z_{i} \quad \text { for all } n>i>0 \\
\mathrm{E}\left[Z_{n}\right] \geq \mathrm{E}\left[Z_{i}\right] \quad \text { for all } n>i>0
\end{gathered}
$$

A function $h(x), \mathbb{R} \rightarrow \mathbb{R}$, is convex if each tangent to the curve lies on or below the curve. The condition $h^{\prime \prime}(x) \geq 0$ is sufficient but not necessary.

Lemma (Jensen's inequality): If h is convex and Z is a rv with finite expectation, then

$$
h(\mathrm{E}[Z]) \leq \mathrm{E}[h(Z)]
$$

Jensen's inequality can be used to prove the following theorem. See Section 7.7 for a proof.

If $\left\{Z_{n} ; n \geq 1\right\}$ is a martingale or submartingale, if h is convex, and if $\mathrm{E}\left[\left|h\left(Z_{n}\right)\right|\right]<\infty$ for all n, then $\left\{h\left(Z_{n}\right) ; n \geq 1\right\}$ is a submartingale.

For example, if $\left\{Z_{n} ; n \geq 1\right\}$ is a martingale, then essentially $\left\{\left|Z_{n}\right| ; n \geq 1\right\},\left\{Z_{n}^{2} ; n \geq 1\right\}$ and $\left\{e^{r Z_{n}} ; n \geq 1\right.$ are submartingales.

Stopped martingales

The definition of a stopping time for a stochastic process $\left\{Z_{n} ; n \geq 1\right\}$ applies to any process. That is, J must be a rv and $\{J=n\}$ must be specified by $\left\{Z_{1}, \ldots, Z_{n}\right\}$.

This can be extended to possibly defective stopping times if J is possibly defective (consider a random walk with a single threshold).

A stopped process $\left\{Z_{n}^{*} ; n \geq 1\right\}$ for a possibly defective stopping time J on a process $\left\{Z_{n} ; n \geq 1\right\}$ satisfies $Z_{n}^{*}=Z_{n}$ if $n \leq J$ and $Z_{n}^{*}=Z_{J}$ if $n>J$.

For example, a given gambling strategy, where Z_{n} is the net worth at time n, could be modified to stop when Z_{n} reaches some given value. Then Z_{n}^{*} would remain at that value forever after, while Z_{n} follows the original strategy.

Theorem: If $\left\{Z_{n} ; n \geq 1\right\}$ is a martingale (submartingale) and J is a possibly defective stopping rule for it, then the stopped process $\left\{Z_{n}^{*} ; n \geq 1\right\}$ is a martingale (submartingale).

Pf: Obvious??? The intuition here is that before stopping occurs, $Z_{n}^{*}=Z_{n}$, so Z_{n}^{*} satisfies the martingale (subm.) condition. Afterwards, Z_{n}^{*} is constant, so it again satisfies the martingale (subm) condition. Section 7.8 does this carefully.

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

