6.262: Discrete Stochastic Processes 5/9/11

L24: Martingales: stopping and converging

## Outline:

- Review of martingales
- Stopped martingales
- The Kolmogorov submartingale inequality
- SLLN for IID rv's with a variance
- The martingale convergence theorem

A sequence $\left\{Z_{n} ; n \geq 1\right\}$ of $r v$ 's is a martingale if

$$
\begin{equation*}
\mathrm{E}\left[Z_{n} \mid Z_{n-1}, Z_{n-2}, \ldots, Z_{1}\right]=Z_{n-1} ; \quad \mathrm{E}\left[\left|Z_{n}\right|\right]<\infty \tag{1}
\end{equation*}
$$

for all $n \geq 1$.

Recall that $\mathrm{E}\left[Z_{n} \mid Z_{n-1}, \ldots, Z_{1}\right]$ is a rv that maps each sample point $\omega$ to the conditional expectation of $Z_{n}$ conditional on $Z_{1}(\omega), \ldots, Z_{n-1}(\omega)$. For a martingale, this expectation must be the rv $Z_{n-1}$.

Lemma: For a martingale, $\left\{Z_{n} ; n \geq 1\right\}$, and for $n>i \geq 1$,

$$
\mathrm{E}\left[Z_{n} \mid Z_{i}, Z_{i-1} \ldots, Z_{1}\right]=Z_{i}: \quad \mathrm{E}\left[Z_{n}\right]=\mathrm{E}\left[Z_{i}\right]
$$

Can you figure out why $\mathrm{E}\left[Z_{n} \mid Z_{m}, \ldots Z_{1}\right]=Z_{n}$ for $m \geq n \boldsymbol{?}$

Note that $\mathrm{E}\left[Z_{n} \mid Z_{1}\right]=Z_{1}$ and $\mathrm{E}\left[Z_{n}\right]=\mathrm{E}\left[Z_{1}\right]$ for all $n>1$.

## Simple Examples of martingales

1) Zero-mean RW: If $Z_{n}=\sum_{i=1}^{n} X_{i}$ where $\left\{X_{i} ; i \geq 1\right\}$ are IID and zero mean, then $\left\{Z_{n} ; n \geq 1\right\}$ is a martingale.
2) If $Z_{n}=\sum_{i=1}^{n} X_{i}$ where $\mathrm{E}\left[X_{i} \mid X_{i-1}, \ldots, X_{1}\right]=0$ for each $i \geq 1$, then $\left\{Z_{n} ; n \geq 1\right\}$ is a martingale.
3) Let $X_{i}=U_{i} Y_{i}$ where $\left\{U_{i} ; i \geq 1\right\}$ are IID, equiprobable $\pm 1$. The $Y_{i}$ are independent of the $U_{i}$. Then $\left\{Z_{n} ; n \geq 1\right\}$, where $Z_{n}=X_{1}+\cdots X_{n}$, is a martingale.
4) Product form martingales: Let $\left\{X_{i} ; i \geq 1\right\}$ be a sequence of IID unit-mean rv's. Then $\left\{Z_{n} ; n \geq 1\right\}$, where $Z_{n}=X_{1} X_{2} \cdots X_{n}$, is a martingale.

If $\mathrm{p}_{X}(0)=\mathrm{p}_{X}(2)=1 / 2$, then $\mathrm{p}_{Z_{n}}\left(2^{n}\right)=2^{-n}$ and $\mathrm{p}_{Z_{n}}(0)=$ $1-2^{-n}$. Thus, $\lim _{n \rightarrow \infty} Z_{n}=0 \mathbf{W P 1}$ and $\lim _{n \rightarrow \infty} \mathrm{E}\left[Z_{n}\right]=1$.

Sub- and supermartingales are sequences $\left\{Z_{n} ; n \geq 1\right\}$ with $\mathrm{E}\left[\left|Z_{n}\right|\right]<\infty$ for which inequalities replace the equalities of martingales. For all $n \geq 1$,

$$
\begin{array}{ll}
\mathrm{E}\left[Z_{n} \mid Z_{n-1}, \ldots, Z_{1}\right] \geq Z_{n-1} & \text { submartingale } \\
\mathrm{E}\left[Z_{n} \mid Z_{n-1}, \ldots, Z_{1}\right] \leq Z_{n-1} & \text { supermartingale }
\end{array}
$$

If $\left\{Z_{n} ; n \geq 1\right\}$ is a submartingale, then $\left\{-Z_{n} ; n \geq 1\right\}$ is a supermartingale and vice-versa, so we consider only submartingales. For submartingales,

$$
\begin{gathered}
\mathrm{E}\left[Z_{n} \mid Z_{i}, \ldots, Z_{1}\right] \geq Z_{i} \quad \text { for all } n>i>0 \\
\mathrm{E}\left[Z_{n}\right] \geq \mathrm{E}\left[Z_{i}\right] \quad \text { for all } n>i>0
\end{gathered}
$$

A function $h(x), \mathbb{R} \rightarrow \mathbb{R}$, is convex if each tangent to the curve lies on or below the curve. The condition $h^{\prime \prime}(x) \geq 0$ is sufficient but not necessary.


Lemma (Jensen's inequality): If $h$ is convex and $Z$ is a rv with finite expectation, then

$$
h(\mathrm{E}[Z]) \leq \mathrm{E}[h(Z)]
$$

Jensen's inequality leads to the following theorem. See proof in text.

Thm 7.8.1: If $\left\{Z_{n} ; n \geq 1\right\}$ is a martingale or submartingale, if $h$ is convex, and if $\mathrm{E}\left[\left|h\left(Z_{n}\right)\right|\right]<\infty$ for all $n$, then $\left\{h\left(Z_{n}\right) ; n \geq 1\right\}$ is a submartingale.

For example, if $\left\{Z_{n} ; n \geq 1\right\}$ is a martingale, then $\left\{\left|Z_{n}\right| ; n \geq\right.$ $1\}$, $\left\{Z_{n}^{2} ; n \geq 1\right\}$ and $\left\{e^{r Z_{n}} ; n \geq 1\right.$ are submartingales if the marginal expected values exist.

The definition of a stopping trial $J$ for a stochastic process $\left\{Z_{n} ; n \geq 1\right\}$ applies to any process. That is, $J$ must be a rv and $\{J=n\}$ must be specified by $\left\{Z_{1}, \ldots, Z_{n}\right\}$.

A possibly defective rv $J$ is a mapping from $\Omega$ to the extended reals $\mathbb{R}^{+}$where $\{J=\infty\}$ and $\{J=-\infty\}$ might have positive probability. The other provisos of rv's still hold.

A possibly defective stopping trial is thus a stopping rule in which stopping may never happen (such as RW's with a single threshold).

A stopped process $\left\{Z_{n}^{*} ; n \geq 1\right\}$ for a possibly defective stopping time $J$ on a process $\left\{Z_{n} ; n \geq 1\right\}$ satisfies $Z_{n}^{*}=Z_{n}$ if $n \leq J$ and $Z_{n}^{*}=Z_{J}$ if $n>J$.

For example, a given gambling strategy, where $Z_{n}$ is the net worth at time $n$, could be modified to stop when $Z_{n}$ reaches some given value. Then $Z_{n}^{*}$ would remain at that value forever after, while $Z_{n}$ follows the original strategy.

Theorem: If $J$ is a possibly defective stopping rule for a martingale (submartingale), $\left\{Z_{n} ; n \geq 1\right\}$, then the stopped process $\left\{Z_{n}^{*} ; n \geq 1\right\}$ is a martingale (submartingale).

Pf: Obvious??? The intuition here is that before stopping occurs, $Z_{n}^{*}=Z_{n}$, so $Z_{n}^{*}$ satisfies the martingale (subm.) condition. Afterwards, $Z_{n}^{*}$ is constant, so it again satisfies the martingale (subm) condition.

Proof that $\left\{Z_{n}^{*} ; n \geq 1\right\}$ is a martingale: Note that

$$
Z_{n}^{*}=\sum_{m=1}^{n-1} Z_{m} \mathbb{I}_{\{J=m\}}+Z_{n} \mathbb{I}_{\{J \geq n\}}
$$

Thus $\left|Z_{n}^{*}\right| \leq \sum_{m<n}\left|Z_{m}\right|+\left|Z_{n}\right|$. Thus means that $\mathrm{E}\left[\left|Z_{n}^{*}\right|\right]<\infty$ since it is bounded by the sum of $n$ finite numbers.

Next, let $\vec{Z}^{(n-1)}$ denote $Z_{n-1}, \ldots, Z_{1}$ and consider

$$
\begin{aligned}
& \mathrm{E}\left[Z_{n}^{*} \mid \vec{Z}^{(n-1)}\right]=\sum_{m<n} \mathrm{E}\left[Z_{m} \mathbb{I}_{\{J=m\}} \mid \vec{Z}^{(n-1)}\right]+\mathrm{E}\left[Z_{n} \mathbb{I}_{\{J \geq n\}} \mid \vec{Z}^{(n-1)}\right] \\
& \mathrm{E}\left[Z_{m} \mathbb{I}_{\{J=m\}} \mid \vec{Z}^{(n-1)}=\vec{Z}^{(n-1)}\right]=\left\{\begin{array}{cc}
z_{m} ; & \text { if } J=m \\
0 ; & \text { if } J \neq m .
\end{array} \quad \text { for } m<n\right. \\
& \mathrm{E}\left[Z_{m} \mathbb{I}_{\{J=m\}} \mid \vec{Z}^{(n-1)}\right]=Z_{m} \mathbb{I}_{J=m} . \\
& \mathrm{E}\left[Z_{n} \mathbb{I}_{\{J=n\}} \mid \vec{Z}^{(n-1)}\right]=Z_{n-1} \mathbb{I}_{\{J \geq n\}} \\
& \mathrm{E}\left[Z_{n}^{*} \mid \vec{Z}^{(n-1)}\right]=\sum_{m<n} Z_{m} \mathbb{I}_{\{J=m\}}+Z_{n-1} \mathbb{I}_{\{J \geq n\}} \\
&=\sum_{m<n-1} Z_{m} \mathbb{I}_{\{J=m\}}+Z_{n-1}\left[\mathbb{I}_{\{J=n-1\}}+\mathbb{I}_{\{J \geq n\}}\right] \\
&=Z_{n-1}^{*}
\end{aligned}
$$

This shows that $\mathrm{E}\left[Z_{n}^{*} \mid \vec{Z}^{(n-1)}\right]=Z_{n-1}^{*}$. To show that $\left\{Z_{n}^{*} ; n \geq 1\right\}$ is a martingale, though, we must show that $\mathrm{E}\left[Z_{n}^{*} \mid \vec{Z}^{*(n-1)}\right]=Z_{n-1}^{*}$. However, $\vec{Z}^{*(n-1)}$ is a function of $\vec{Z}^{(n-1)}$.

For every sample point $\vec{z}^{(n-1)}$ of $\vec{Z}^{(n-1)}$ leading to a given $\vec{z}^{*}(n-1)$ of $\vec{Z}^{*(n-1)}$, we have

$$
\mathrm{E}\left[Z_{n}^{*} \mid \vec{Z}^{(n-1)}=\vec{z}^{(n-1)}\right]=z_{n-1}^{*}
$$

and thus

$$
\mathrm{E}\left[Z_{n}^{*} \mid \vec{Z}^{*(n-1)}=\vec{z}^{*(n-1)}\right]=z_{n-1}^{*} .
$$

QED

A consequence of the theorem, under the same assumptions, is that

$$
\begin{array}{ll}
\mathrm{E}\left[Z_{1}\right] \leq \mathrm{E}\left[Z_{n}^{*}\right] \leq \mathrm{E}\left[Z_{n}\right] & \text { (submartingale) } \\
\mathrm{E}\left[Z_{1}\right]=\mathrm{E}\left[Z_{n}^{*}\right]=\mathrm{E}\left[Z_{n}\right] & \text { (martingale) }
\end{array}
$$

This is also almost intuitively obvious and proved in Section 7.8.

Recall the generating function product martingale for a random walk. That is, let $\left\{X_{n} ; n \geq 1\right\}$ be IID and $\left\{S_{n} ; n \geq\right.$ $1\}$ be a random walk where $S_{n}=X_{1}+\cdots+X_{n}$.

Then for $r$ such that $\gamma(r)$ exists, let $Z_{n}=\exp \left[r S_{n}-n \gamma(r)\right]$. Then $\left\{Z_{n} ; n \geq 1\right\}$ is a martingale and $\mathrm{E}\left[Z_{n}\right]=1$ for all $n \geq 1$.

For $r$ such that $\gamma(r)$ exists, let $Z_{n}=\exp \left[r S_{n}-n \gamma(r)\right]$. Then $\left\{Z_{n} ; n \geq 1\right\}$ is a martingale and $\mathrm{E}\left[Z_{n}\right]=1$ for all $n \geq 1$.

Let $J$ be the nondefective stopping time that stops on crossing either $\alpha>0$ or $\beta<0$. Then $\mathrm{E}\left[Z_{n}^{*}\right]=1$ for all $n \geq 1$.

Also, $\lim _{n \rightarrow \infty} Z_{n}^{*}=Z_{J}$ WP1 and

$$
\mathrm{E}\left[Z_{J}\right]=\mathrm{E}\left[\exp \left[r S_{J}-J \gamma(r)\right]=1\right.
$$

This is Wald's identity in a more general form. The connection of $\lim _{n} Z_{n}^{*}$ to $Z_{J}$ needs more care (see Section 7.8), but this shows the power of martingales.

## Kolmgorov's submartingale inequality

Thm: Let $\left\{Z_{n} ; n \geq 1\right\}$ be a non-negative submartingale. Then for any positive integer $m$ and any $a>0$,

$$
\begin{equation*}
\operatorname{Pr}\left\{\max _{1 \leq i \leq m} Z_{i} \geq a\right\} \leq \frac{\mathrm{E}\left[Z_{m}\right]}{a} . \tag{2}
\end{equation*}
$$

If we replace the max with $Z_{m}$, this is the lowly but useful Markov inequality.

Proof: Let $J$ be the stopping time defined as the smallest $n \leq m$ such that $Z_{n} \geq a$.

If $Z_{n} \geq a$ for some $n \leq m$, then $\mathbf{J}$ is the smallest $n$ for which $Z_{n} \geq a$.

If $Z_{n}<a$ for all $n \leq m$, then $J=m$. Thus the process must stop by time $m$, and $Z_{J} \geq a$ iff $Z_{n} \geq a$ for some $n \leq m$. Thus

$$
\operatorname{Pr}\left\{\max _{1 \leq n \leq m} Z_{n} \geq a\right\}=\operatorname{Pr}\left\{Z_{J} \geq a\right\} \leq \frac{\mathrm{E}\left[Z_{J}\right]}{a}
$$

Since the process must be stopped by time $m$, we have $Z_{J}=Z_{m}^{*}$.
$\mathrm{E}\left[Z_{m}^{*}\right] \leq \mathrm{E}\left[Z_{m}\right]$, so the right hand side above is less than or equal to $\mathrm{E}\left[Z_{m}\right] / a$, completing the proof.

The Kolmogorove submartingale inequality is a strengthening of the Markov inequality. The Chebyshev inequality is strengthened in the same way.

Let $\left\{Z_{n} ; n \geq 1\right\}$ be a martingale with $\mathrm{E}\left[Z_{n}^{2}\right]<\infty$ for all $n \geq 1$. Then
$\operatorname{Pr}\left\{\max _{1 \leq n \leq m}\left|Z_{n}\right| \geq b\right\} \leq \frac{\mathrm{E}\left[Z_{m}^{2}\right]}{b^{2}} ;$ for all integer $m \geq 2$, all $b>0$. Let $\left\{S_{n} ; n \geq 1\right\}$ be a RW with $S_{n}=X_{1}+\cdots+X_{n}$ where each $X_{i}$ has mean $\bar{X}$ and variance $\sigma^{2}$. Then for any positive integer $m$ and any $\epsilon>0$,

$$
\operatorname{Pr}\left\{\max _{1 \leq n \leq m}\left|S_{n}-n \bar{X}\right| \geq m \epsilon\right\} \leq \frac{\sigma^{2}}{m \epsilon^{2}}
$$

## SLLN for IID rv's with a variance

Thm: Let $\left\{X_{i} ; i \geq 1\right\}$ be a sequence of IID random variables with mean $\bar{X}$ and standard deviation $\sigma<\infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Then for any $\epsilon>0$,

$$
\operatorname{Pr}\left\{\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\bar{X}\right\}=1
$$

Idea of proof:

$$
\operatorname{Pr}\left\{\bigcup_{m=k}^{\infty}\left\{\max _{1 \leq n \leq 2^{m}}\left|S_{n}-n \bar{X}\right| \geq 2^{m} \epsilon\right\}\right\} \leq \sum_{m=k}^{\infty} \frac{\sigma^{2}}{2^{m} \epsilon^{2}}=\frac{2 \sigma^{2}}{2^{k} \epsilon^{2}}
$$

Then lower bound the left term to

$$
\operatorname{Pr}\left\{\bigcup_{m=k}^{\infty}\left\{\max _{2^{m-1} \leq n \leq 2^{m}}\left|S_{n}-n \bar{X}\right| \geq 2 n \epsilon\right\}\right\}
$$

Thm: Let $\left\{Z_{n} ; n \geq 1\right\}$ be a martingale and assume that there is some finite $M$ such that $\mathrm{E}\left[\left|Z_{n}\right|\right] \leq M$ for all $n$. Then there is a random variable $Z$ such that, $\lim _{n \rightarrow \infty} Z_{n}=$ $Z$ WP1.

The text proves the theorem with the additional constraint that $\mathrm{E}\left[Z_{n}^{2}\right]$ is bounded. Either bounded $\mathrm{E}\left[Z_{n}^{2}\right]$ or bounded $\mathrm{E}\left[\left|Z_{n}\right|\right]$ is a very strong constraint, but the theorem is still very powerful.

For a branching process $\left\{X_{n} ; n \geq 1\right\}$ where the number $Y$ of offspring of an element has $\bar{Y}>1$, we saw that $\left\{X_{n} / \bar{Y}^{n} ; n \geq 1\right\}$ is a martingale satisfying the constraint, so $X^{n} / \bar{Y}^{n} \rightarrow Z$ WP1.

MIT OpenCourseWare
http://ocw.mit.edu

### 6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

