6.262: Discrete Stochastic Processes 5/9/11

L24: Martingales: stopping and converging

Outline:

- Review of martingales
- Stopped martingales
- The Kolmogorov submartingale inequality
- SLLN for IID rv's with a variance
- The martingale convergence theorem

A sequence $\{Z_n; n \ge 1\}$ of rv's is a martingale if

$$\mathsf{E}\left[Z_n \mid Z_{n-1}, Z_{n-2}, \dots, Z_1\right] = Z_{n-1}; \quad \mathsf{E}\left[|Z_n|\right] < \infty \tag{1}$$
 for all $n > 1$.

Recall that $E[Z_n | Z_{n-1}, ..., Z_1]$ is a rv that maps each sample point ω to the conditional expectation of Z_n conditional on $Z_1(\omega), ..., Z_{n-1}(\omega)$. For a martingale, this expectation must be the rv Z_{n-1} .

Lemma: For a martingale, $\{Z_n; n \ge 1\}$, and for $n > i \ge 1$,

 $E[Z_n | Z_i, Z_{i-1}..., Z_1] = Z_i$: $E[Z_n] = E[Z_i]$

Can you figure out why $E[Z_n | Z_m, \dots Z_1] = Z_n$ for $m \ge n$?

Note that $E[Z_n | Z_1] = Z_1$ and $E[Z_n] = E[Z_1]$ for all n > 1.

1

Simple Examples of martingales

1) Zero-mean RW: If $Z_n = \sum_{i=1}^n X_i$ where $\{X_i; i \ge 1\}$ are IID and zero mean, then $\{Z_n; n \ge 1\}$ is a martingale.

2) If $Z_n = \sum_{i=1}^n X_i$ where $E[X_i | X_{i-1}, \dots, X_1] = 0$ for each $i \ge 1$, then $\{Z_n; n \ge 1\}$ is a martingale.

3) Let $X_i = U_i Y_i$ where $\{U_i; i \ge 1\}$ are IID, equiprobable ± 1 . The Y_i are independent of the U_i . Then $\{Z_n; n \ge 1\}$, where $Z_n = X_1 + \cdots + X_n$, is a martingale.

4) Product form martingales: Let $\{X_i; i \ge 1\}$ be a sequence of IID unit-mean rv's. Then $\{Z_n; n \ge 1\}$, where $Z_n = X_1 X_2 \cdots X_n$, is a martingale.

If $p_X(0) = p_X(2) = 1/2$, then $p_{Z_n}(2^n) = 2^{-n}$ and $p_{Z_n}(0) = 1 - 2^{-n}$. Thus, $\lim_{n\to\infty} Z_n = 0$ WP1 and $\lim_{n\to\infty} E[Z_n] = 1$.

Sub- and supermartingales are sequences $\{Z_n; n \ge 1\}$ with $E[|Z_n|] < \infty$ for which inequalities replace the equalities of martingales. For all $n \ge 1$,

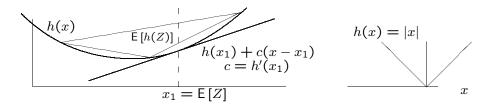
$E\left[Z_n \mid Z_{n-1}, \ldots, Z_1\right]$	$\geq Z_{n-1}$	submartingale
$E\left[Z_n \mid Z_{n-1}, \ldots, Z_1\right]$	$\leq Z_{n-1}$	supermartingale

If $\{Z_n; n \ge 1\}$ is a submartingale, then $\{-Z_n; n \ge 1\}$ is a supermartingale and vice-versa, so we consider only submartingales. For submartingales,

$$E[Z_n | Z_i, \dots, Z_1] \ge Z_i \qquad \text{for all } n > i > 0$$
$$E[Z_n] \ge E[Z_i] \qquad \text{for all } n > i > 0$$

Convex functions

A function h(x), $\mathbb{R} \to \mathbb{R}$, is convex if each tangent to the curve lies on or below the curve. The condition $h''(x) \ge 0$ is sufficient but not necessary.



Lemma (Jensen's inequality): If h is convex and Z is a rv with finite expectation, then

 $h(\mathsf{E}[Z]) \leq \mathsf{E}[h(Z)]$

5

Jensen's inequality leads to the following theorem. See proof in text.

Thm 7.8.1: If $\{Z_n; n \ge 1\}$ is a martingale or submartingale, if h is convex, and if $E[|h(Z_n)|] < \infty$ for all n, then $\{h(Z_n); n \ge 1\}$ is a submartingale.

For example, if $\{Z_n; n \ge 1\}$ is a martingale, then $\{|Z_n|; n \ge 1\}$, $\{Z_n^2; n \ge 1\}$ and $\{e^{rZ_n}; n \ge 1$ are submartingales if the marginal expected values exist.

Stopped martingales

The definition of a stopping trial J for a stochastic process $\{Z_n; n \ge 1\}$ applies to any process. That is, J must be a rv and $\{J = n\}$ must be specified by $\{Z_1, \ldots, Z_n\}$.

A possibly defective rv J is a mapping from Ω to the extended reals \mathbb{R}^+ where $\{J = \infty\}$ and $\{J = -\infty\}$ might have positive probability. The other provisos of rv's still hold.

A possibly defective stopping trial is thus a stopping rule in which stopping may never happen (such as RW's with a single threshold).

A stopped process $\{Z_n^*; n \ge 1\}$ for a possibly defective stopping time J on a process $\{Z_n; n \ge 1\}$ satisfies $Z_n^* = Z_n$ if $n \le J$ and $Z_n^* = Z_J$ if n > J.

7

For example, a given gambling strategy, where Z_n is the net worth at time n, could be modified to stop when Z_n reaches some given value. Then Z_n^* would remain at that value forever after, while Z_n follows the original strategy.

Theorem: If J is a possibly defective stopping rule for a martingale (submartingale), $\{Z_n; n \ge 1\}$, then the stopped process $\{Z_n^*; n \ge 1\}$ is a martingale (submartingale).

Pf: Obvious??? The intuition here is that before stopping occurs, $Z_n^* = Z_n$, so Z_n^* satisfies the martingale (subm.) condition. Afterwards, Z_n^* is constant, so it again satisfies the martingale (subm) condition.

Proof that $\{Z_n^*; n \ge 1\}$ is a martingale: Note that

$$Z_n^* = \sum_{m=1}^{n-1} Z_m \mathbb{I}_{\{J=m\}} + Z_n \mathbb{I}_{\{J\geq n\}}$$

Thus $|Z_n^*| \leq \sum_{m < n} |Z_m| + |Z_n|$. Thus means that $E[|Z_n^*|] < \infty$ since it is bounded by the sum of n finite numbers.

Next, let
$$\vec{Z}^{(n-1)}$$
 denote Z_{n-1}, \dots, Z_1 and consider

$$E\left[Z_n^* \mid \vec{Z}^{(n-1)}\right] = \sum_{m < n} E\left[Z_m \mathbb{I}_{\{J=m\}} \mid \vec{Z}^{(n-1)}\right] + E\left[Z_n \mathbb{I}_{\{J\geq n\}} \mid \vec{Z}^{(n-1)}\right]$$

$$E\left[Z_m \mathbb{I}_{\{J=m\}} \mid \vec{Z}^{(n-1)} = \vec{z}^{(n-1)}\right] = \begin{cases} z_m; & \text{if } J = m \\ 0; & \text{if } J \neq m. \end{cases} \text{ for } m < n$$

$$E\left[Z_m \mathbb{I}_{\{J=m\}} \mid \vec{Z}^{(n-1)}\right] = Z_m \mathbb{I}_{J=m}.$$

$$E\left[Z_n \mathbb{I}_{\{J=n\}} \mid \vec{Z}^{(n-1)}\right] = Z_{n-1} \mathbb{I}_{\{J\geq n\}}$$

$$E\left[Z_n^* \mid \vec{Z}^{(n-1)}\right] = \sum_{m < n} Z_m \mathbb{I}_{\{J=m\}} + Z_{n-1} \mathbb{I}_{\{J\geq n\}}$$

$$= \sum_{m < n-1} Z_m \mathbb{I}_{\{J=m\}} + Z_{n-1} [\mathbb{I}_{\{J=n-1\}} + \mathbb{I}_{\{J\geq n\}}]$$

$$= Z_{n-1}^*$$

This shows that $E\left[Z_n^* \mid \vec{Z}^{(n-1)}\right] = Z_{n-1}^*$. To show that $\{Z_n^*; n \ge 1\}$ is a martingale, though, we must show that $E\left[Z_n^* \mid \vec{Z}^{*(n-1)}\right] = Z_{n-1}^*$. However, $\vec{Z}^{*(n-1)}$ is a function of $\vec{Z}^{(n-1)}$.

For every sample point $\vec{z}^{(n-1)}$ of $\vec{Z}^{(n-1)}$ leading to a given $\vec{z}^{*(n-1)}$ of $\vec{Z}^{*(n-1)}$, we have

$$\mathsf{E}\left[Z_{n}^{*} \mid \vec{Z}^{(n-1)} = \vec{z}^{(n-1)}\right] = z_{n-1}^{*}$$

and thus

$$\mathsf{E}\left[Z_{n}^{*} \mid \vec{Z}^{*(n-1)} = \vec{z}^{*(n-1)}\right] = z_{n-1}^{*}.$$

QED

A consequence of the theorem, under the same assumptions, is that

 $E[Z_1] \leq E[Z_n^*] \leq E[Z_n]$ (submartingale) $E[Z_1] = E[Z_n^*] = E[Z_n]$ (martingale)

This is also almost intuitively obvious and proved in Section 7.8.

Recall the generating function product martingale for a random walk. That is, let $\{X_n; n \ge 1\}$ be IID and $\{S_n; n \ge 1\}$ be a random walk where $S_n = X_1 + \cdots + X_n$.

Then for r such that $\gamma(r)$ exists, let $Z_n = \exp[rS_n - n\gamma(r)]$. Then $\{Z_n; n \ge 1\}$ is a martingale and $\mathbb{E}[Z_n] = 1$ for all $n \ge 1$.

For *r* such that $\gamma(r)$ exists, let $Z_n = \exp[rS_n - n\gamma(r)]$. Then $\{Z_n; n \ge 1\}$ is a martingale and $\mathbb{E}[Z_n] = 1$ for all $n \ge 1$.

Let *J* be the nondefective stopping time that stops on crossing either $\alpha > 0$ or $\beta < 0$. Then $E[Z_n^*] = 1$ for all $n \ge 1$.

Also, $\lim_{n\to\infty} Z_n^* = Z_J$ WP1 and

$$\mathsf{E}[Z_J] = \mathsf{E}[\exp[rS_J - J\gamma(r)] = 1$$

This is Wald's identity in a more general form. The connection of $\lim_n Z_n^*$ to Z_J needs more care (see Section 7.8), but this shows the power of martingales.

Kolmgorov's submartingale inequality

Thm: Let $\{Z_n; n \ge 1\}$ be a non-negative submartingale. Then for any positive integer m and any a > 0,

$$\Pr\left\{\max_{1\leq i\leq m} Z_i \geq a\right\} \leq \frac{\mathsf{E}\left[Z_m\right]}{a}.$$
(2)

If we replace the max with Z_m , this is the lowly but useful Markov inequality.

Proof: Let *J* be the stopping time defined as the smallest $n \leq m$ such that $Z_n \geq a$.

14

If $Z_n \ge a$ for some $n \le m$, then J is the smallest n for which $Z_n \ge a$.

If $Z_n < a$ for all $n \le m$, then J = m. Thus the process must stop by time m, and $Z_J \ge a$ iff $Z_n \ge a$ for some $n \le m$. Thus

$$\Pr\left\{\max_{1\leq n\leq m} Z_n \geq a\right\} = \Pr\{Z_J \geq a\} \leq \frac{\mathsf{E}[Z_J]}{a}.$$

Since the process must be stopped by time m, we have $Z_J = Z_m^*$.

 $E[Z_m^*] \leq E[Z_m]$, so the right hand side above is less than or equal to $E[Z_m]/a$, completing the proof.

The Kolmogorove submartingale inequality is a strengthening of the Markov inequality. The Chebyshev inequality is strengthened in the same way.

Let $\{Z_n; n \ge 1\}$ be a martingale with $E[Z_n^2] < \infty$ for all $n \ge 1$. Then

 $\Pr\left\{\max_{1 \le n \le m} |Z_n| \ge b\right\} \le \frac{\mathsf{E}\left[Z_m^2\right]}{b^2}; \text{ for all integer } m \ge 2, \text{ all } b > 0.$

Let $\{S_n; n \ge 1\}$ be a RW with $S_n = X_1 + \cdots + X_n$ where each X_i has mean \overline{X} and variance σ^2 . Then for any positive integer m and any $\epsilon > 0$,

$$\Pr\left\{\max_{1\leq n\leq m}|S_n-n\overline{X}|\geq m\epsilon\right\}\leq \frac{\sigma^2}{m\epsilon^2}.$$

10

SLLN for IID rv's with a variance

Thm: Let $\{X_i; i \ge 1\}$ be a sequence of IID random variables with mean \overline{X} and standard deviation $\sigma < \infty$. Let $S_n = X_1 + \cdots + X_n$. Then for any $\epsilon > 0$,

$$\Pr\Bigl\{\lim_{n\to\infty}\frac{S_n}{n}=\overline{X}\Bigr\}=1$$

Idea of proof:

$$\Pr\left\{\bigcup_{m=k}^{\infty}\left\{\max_{1\leq n\leq 2^{m}}|S_{n}-n\overline{X}|\geq 2^{m}\epsilon\right\}\right\}\leq \sum_{m=k}^{\infty}\frac{\sigma^{2}}{2^{m}\epsilon^{2}}=\frac{2\sigma^{2}}{2^{k}\epsilon^{2}}$$

Then lower bound the left term to

$$\Pr\left\{\bigcup_{m=k}^{\infty}\left\{\max_{2^{m-1}\leq n\leq 2^{m}}|S_{n}-n\overline{X}|\geq 2n\epsilon\right\}\right\}$$

The martingale convergence theorem

Thm: Let $\{Z_n; n \ge 1\}$ be a martingale and assume that there is some finite M such that $E[|Z_n|] \le M$ for all n. Then there is a random variable Z such that, $\lim_{n\to\infty} Z_n = Z$ WP1.

The text proves the theorem with the additional constraint that $E[Z_n^2]$ is bounded. Either bounded $E[Z_n^2]$ or bounded $E[|Z_n|]$ is a very strong constraint, but the theorem is still very powerful.

For a branching process $\{X_n; n \ge 1\}$ where the number Y of offspring of an element has $\overline{Y} > 1$, we saw that $\{X_n/\overline{Y}^n; n \ge 1\}$ is a martingale satisfying the constraint, so $X^n/\overline{Y}^n \to Z$ WP1.

18

6.262 Discrete Stochastic Processes Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.