
6.262: Discrete Stochastic Processes 5/11/11

L25: Putting it all together?

Outline:

• Martingales

• Markov chains (Countable or finite state)

• Countable state Markov processes

• Random walks
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Martingales

A sequence {Zn; n ≥ 1} is a martingale if for all n > 1,

E
[
Zn | Zn−1, Zn−2, . . . , Z1

]
= Zn−1; E [|Zn|] < ∞

Lemma: For a martingale, {Zn; n ≥ 1}, and for n > i ≥ 1,

E
[
Zn | Zi, Zi 1 . . . , Z1

]
= Zi : [− E [Zn] = E Zi]

The increments Xn = Zn−Zn−1 satisfy E Xn | Xn−1, . . . , X1 =
0 iff {Zn; n ≥ 1} is a martingale. A go

[

od special case is

]

Xn = UnYn where Un are IID, pU(1) = pU(−1) = 1/2.

Examples: Zero mean RW and product of unit-mean IID

rv’s.
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Submartingales

{Zn;n ≥ 1} is a submartingale if for all n ≥ 1,

E
[
Zn+1 | Zn, . . . , Z1

]
≥ Zn; E [Zn|] < ∞

Lemma: If {Zn;n ≥ 1} is a martingale, then for n > i > 0,

E [Zn | Zi, . . . , Z1] ≥ Zi; E [Zn] ≥ E [Zi]

If h(x) is convex, then Jensen’s inequality says E [h(X)] ≥
h(E [X]). If {Zn; n ≥ 1} is a submartingale (including mar-

tingale), h is convex, and E [|h(X)|] < ∞, then {h(Zn); n ≥
1} is a submartingale.
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Stopped (sub)martingales

A stopped process {Zn
∗; n ≥ 1} for a possibly defective

stopping time J on a process {Zn; n ≥ 1} satisfies Zn
∗ = Zn

if n ≤ J and Zn
∗ = ZJ if n > J.

Theorem: The stopped process, {Zn
∗; n ≥ 1}, for a (sub)

martingale with a (possibly defective) stopping rule is a

(sub)martingale and satisfies

E [Z1] ≤ E
[
Z

[ n
∗] ≤ E [Zn] (submartingale)

E [Z1] = E Zn
∗] = E [Zn] (martingale)

For the product martingale Zn = exp[rSn − nγ(r)], and

a stopping rule J such as threshold crossing, we get a

stopped martingale. Subject to some small mathematical

nits, this leads to Wald’s identity,

E [ZJ] = E [exp[rSJ − Jγ(r)] = 1
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Kolmgorov’s submartingale inequality

Thm: Let {Zn; n ≥ 1} be a non-negative submartingale.

Then for any positive integer m and any a > 0,

Pr

{

max Zi
1≤i≤m

≥ a

}
E [Z≤ m]

.
a

This is Kolmogorov’s strenghening of the Markov in-

equality.

For non-negative martingales, we can go to the limit

m →∞ since E [Zm] = E [Z1]:

Pr

{
]

supZn
n≥1

≥
}

E [Z≤ 1a
a
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Kolmogorov version of Chebyshev: Let {Zn; n ≥ 1} be

a martingale (or submartingale) with E
[

2Zn

]
< ∞ for all

n ≥ 1. Then

Pr

{

max
1≤n≤m

|Zn| ≥ b

}
E

≤

[
2Zm

]

; m ,2 ≥ 1 b > 0.
b

It is often more useful to maximize only over half the

interval and take a union over different intervals, e.g.,

Pr


 ⋃

{ }
 ∑∞ 2E|Z2j |

 max
j k

|Zn| ≥ bj
2j−1≥ <n  ≤

≤2j
j=k

2bj

For the zero-mean RW {Sn; n ≥ 1} where Sn = X1+ · · ·Xn

with 2X = 0 and E
[
X

]
= 2σ , E

[
2 2Z j

]
= 2jσ .

2

Pr


 ⋃


j≥k

{
3

max Sn
2j−1<n≤2j

| | ≥
( j

2

) }
 ∞

 ≤
j

∑

=k

(8 j

9

)
2σ =

(8 k

9

)
9 2σ

where bj = (3/2)j.
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SLLN for {Sn; n ≥ 1 where Sn = X1+· · ·Xn and {Xn; n ≥ 1}
are IID with 2X = 0, E

[
X

]
= 2σ < ∞. Then

Pr
{

Sn
ω : lim

n→∞ = 0
n

}
= 1.

Proof:

Pr




j

⋃

k

{ (3
 max

2j−1≥ <n≤2j
|Sn| ≥

j

2

) }


 ≤
(8 k

9

)
9 2σ

Lower bounding the left side,

Pr




j

⋃
{

 max
|Sn|

2j≥k
−1<n≤2j

3
2

n
≥

( j

4

) }


 ≤
(8

9

)k
9 2σ

Any sample sequence {Sn(ω); n ≥ 1} that is not contained

in the union on the left must satisfy limn→∞ |Sn|/n = 0,
and thus Pr{ 2ω : limn |Sn|/n = 0} > 1− (8/9)k9σ . Since this

is true for all k, the theorem is proved. It applies to other

martingales also.
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Markov chains (Countable or finite state)

Def: The first passage time Tij from state i to j is the

smallest n, given X0 = i, at which Xn = j. Tij is a possibly

defective rv with PMF fij(n) and dist. fcn. Fij(n).

fij(n) =
∑ n

Pikfkj(n− 1); Fij(n) =
k=j m

∑
fij(m); n > 1.

=1

Def: State j is recurrent if Tjj is non-defective and tran-

sient[ otherwise. If recurrent, it is positive recurrent if

E Tjj

]
< ∞ and null recurrent otherwise.

For each recurrent j there is a integer renewal counting

process {Njj(t); t > 0} of visits to j starting in j. It has

interrenewal distribution Fjj(n).

There is a delayed renewal counting process {Nij(t); t > 0}
for visits to j starting in i.

'
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Thm: All states in a class are positive recurrent, or all

are null recurrent, or all are transient.

Def: A chain is irreducible if all state pairs communicate.

It is called irreducible because the problem of getting

from one or another transient class to an ‘irreducible

class’ is largely separable from the analysis of that ‘irre-

ducible class’ which then becomes the entire chain.

An irreducible class can be positive recurrent, null recur-

rent, or transient.
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Thm: For an irreducible Markov chain, if the ‘steady

state’ equations

πj =
∑

πiPij and πj 0
i

≥ for all j;
∑

πj = 1
j

has a solution, then the solution is unique, πj = 1/T jj > 0
for all j, and the states are positive recurrent. Also if

the states are positive recurrent, then the steady state

equations have a solution.

This is an infinite set of equations, so not necessarily

computer solvable.

The counting processes under positive recurrence must

satisfy

Nij(n)
lim

n→∞ = πj WP1
n
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Markov model of age of renewal process

πn = π0P01P12 · · ·Pn−1,n = Pr{Z > n}

1 =
∑ ∞

πi = π0
i i

∑
Pr

=0
{Z > n} = π0Z

This is a nice chain for examples about null-recurrence.
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A birth-death Markov chain

This is another very useful model for examples about re-

currence and for models of sampled-time queueing sys-

tems.

Note that the steady state equations are almost trivial.

π 1πipi = πi+1q +1;
i+

i = ρi
πi

where ρi = pi/qi+1.
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Markov processes

A Markov process {X(t); t ≥ 0} is a combination of a

countable state Markov chain {Xn; n ≥ 1} along with an

exponential holding time Un for each state.

Pr{Un ≤ τ | Xn = j,past} = 1− exp(τνj)

X0 X1 X2 X3* * *

U1 U2 U3 U4
+, +, +, +,

+ + + +
+ + + +

+ + + +

*

A Markov process is specified by the embedded transition

probabilities Pij and the rates νi.

rate νi
U1

X0 = i
0 X(t) = i S1 S2 S3

*
rate νj

- U2
X1 = j
X(t) = j

*
rate νk

- U3
X2 = k
X(t) = k

*-

Def: Transition rates are given by qij = νiPij.
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Three ways to represent a Markov process.
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The same M/M/1 queue in sampled time.
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% %
Un

%
Xn=j X

%
n+1=j X

%
n+2=j Xn+3=j Xn

%
+4=j

*
Rj(t)-

Wk *-

From the (delayed) renewal reward theorem,

pj = lim
t→∞

∫ t
0 Rj(τ)dτ

=
t

U(j) 1
=

W(j) νj
W.P.1.

W(j)

We can also assign unit reward for each transition in the

renewal interval from state j to j. Let Mi(t) be number

of transitions in (0, t] given that X(0) = i.

M
Mi = lim i(t)

t→∞
1

=
t πj

W.P.1.
Wj

πj
pj =

νj
Mi

' ' '
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1
pj =

νj
;

W(j)

1
M =

πj

πj; pj =
Wj νj

M

If 0 < M < ∞, then each pj > 0 and
∑

j pj = 1.

1
M =

π
∑

j/νj; pj =
i πi/νi

Simila

∑
i πi/νi

rly, since
∑

i πi = 1,

p
M =

∑ jνj
piνi; πj =

i

MP

∑
i piνi

A sampled time exists if νi ≤ A for some A and all

i. The steady state probabilities are the time average

probabilities, {pi}, which satisfy

νjpj =
∑

νipj; pj
i

≥ 0;
∑

pi = 1
i
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The strange cases occur when M is 0 or infinite.

M = 0 for the rattled server and discouraged customer

queue. Here the embedded chain is positive recurrent,

but all pj are zero and the sampled-time chain is null

recurrent.

The case M = ∞ is not possible for a positive recur-

rent embedded chain, but is possible when the equations

νjpj =
ular, and

∑
i νipi have a solution. These processes are irreg-

allow an infinite number of transitions in finite

time.
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Reversibility for MP’s

For any (embedded) Markov chain, the backward transi-

tion probabilities are defined as

πiPij
∗ = πjPji

State i

t1 t2

*- State j, rate νj *- State k *-

Moving right, after entering state j, the exit rate is νj,

i.e., we exit in each δ with probability νjδ. The some

holds moving left.

Thus {πi} and {νi} are the same going left as going right

18



Note that the probability of having a (right) transition

from state j to k in (t, t+δ) is pjqjkδ. Similarly, for the left

going process, if qk
∗ is the process transition rate, thej

probability of having the same transition is pkqk
∗ . Thusj

pjqjk = pkqk
∗
j

By fiddling equations, qk
∗ = νj kPk

∗ .j

Def: A MP is reversible if qij
∗ = qji for all i, j

Assuming positive recurrence and
∑

i πi/νi < ∞, the MP

process is reversible if and only if the embedded chain is.
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The guessing theorem: Suppose a MP is irreducible and

{pi} is a set of probabilities and satisfies piqij =
∑

pjqji for

all i, j and satisfies i piνi < ∞.

Then pi > 0 for all i, pi is the steady state time average

probability of state i, the process is reversible, and the

embedded chain is positive recurrent.

Useful application: All birth/death processes are reversible

(if
∑

j pjνj < ∞)
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Random Walks

Def: A random walk is a sequence {Sn;n ≥ 1} of succes-

sive sums Sn = X1 + · · · + Xn of IID rv’s Xi.

We are interested in exponential bounds on Sn for large

n (Chernoff bounds)

We are also interested in threshold crossings: for 2 thresh-

olds, α > 0 and β < 0, what is the stopping time when

Sn first crosses α or β, what is the probability of crossing

each, and what is the distribution of the overshoot.
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Let a rv Z have an MGF gZ(r) for 0 ≤ r < r+ and mean

Z < 0. By the Chernoff bound, for any α > 0 and any

r ∈ (0, r+),

Pr{Z ≥ α} ≤ gZ(r) exp(−rα) = exp(γZ(r)− rα)

where γZ(r) = ln gZ(r). If Z is a sum Sn = X1 + · · · + Xn,

of IID rv’s, then γS (n r) = nγX(r).

Pr{Sn ≥ na} ≤min (exp[n(γX(r)− ra)]) .
r

This is exponential in n for fixed a (i.e., γ′(r) = a). We are

now interested in threshold crossings, i.e., Pr{ n(Sn ≥ α)}.
As a preliminary step, we study how Pr{Sn

⋃

≥ α} varies

with n for fixed α.

Pr{Sn ≥ α} ≤min (exp[nγX(r)
r

− rα]) .

Here the minimizing r varies with n (i.e., γ′(r) = α/n).
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n
Pr{Sn ≥ α} ≤ min exp

0<r<r+

(
−α

[
r − γX(r)

α

])

r − γ(r)n/α

.
.

.
.

.
.

slope

ro − γ(ro)n/α
0 r ro r∗

)(((((( ,+
( +(( +

X γ(ro) slope α/n = γ′(ro)

r∗ satisfies γ(r∗) = 0

When n is very large, the slope α = γ′ (r closeX 0) is to 0n
and the horizontal intercept (the negative exponent) is

very large. As n decreases, the intercept decreases to r∗

and then increases again.

Thus Pr{⋃
n{Sn ≥ α}} ≈ exp(−αr∗), where the nature of

the approximation will be explained in terms of the Wald

identity.
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Thm: (Wald) Let γ(r) = ln(E [exp(rX)]) exist over (r−, r+)
containing 0. Let J be trial at which Sn first exceeds α > 0
or β < 0. Then

E [exp(rSJ − Jγ(r)] = 1 for r ∈ (r−, r+)

More generally theorem holds if stopping time is a rv

under both the given probability and the tilted probability.

The proof simply sums the probabilities of the stopping

nodes under both the probability measure and the tilted

probability measure.

E [SJ] = E [J]X

E
[

2SJ

]
= 2E [J]σ ifX X = 0
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These bounds are all exponentially tight.

If any ε is added to any such exponent, the upper bound

becomes a lower bound at sufficiently large α with fixed

α/n.

The slack in the bounds come partly from the overshoot

and partly from the lower threshold.

The lower threshold is unimportant if both thresholds are

far from 0.

The overshoot is similar to residual life for renewal pro-

cesses. It doesn’t exist for simple random walks and is

easy to calculate if the positive part of the density of X

is exponential.
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Wald’s identity for 2 thresholds

Let {Xi; i ≥ 1} be IID with γ(r) = ln(E [exp(rX)]) for r ∈
(r− < 0 < r+). Let {Sn; n ≥ 1 be the RW with Sn =
X1 + · · · + Xn. If J is the trial at which Sn first crosses

α > 0 or β < 0, then

E [exp(rSJ − Jγ(r)] = 1 for r ∈ (r−, r+)

Corollary: If X < 0 and r∗ > 0 satisfies γ(r∗) = 0, then

Pr{SJ ≥ α} ≤ exp(−αr∗)
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Review of hypothesis testing: View a binary hypothesis

as a binary rv H with pH(0) = p0 and pH(1) = p1.

We observe {Yn;n ≥ 1}, which, conditional on H = - is IID

with density fY H(Y |-). Define the log likelihood ratio|

n

LLR(Y. n) =
∑ fY H(Y 0)

ln i| i|

i=1 fYi|H(yi|1)

Pr
ln

{H=0 | .yn} p0f
Y. n (.yn

= ln
|H | 0)

Pr{H=1 | .yn}
p0= ln

p1f
Y. n (.yn

|H | 1)
+ LLR( n.y ).

p1

ˆ
MAP rule: LLR( n > ln p /p ; select h=0

.y )

{
1 0

≤ ln p1/p0 ; select ĥ=1.
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f
Z

i

∑n Y
Sn = i where Zi = ln i|H(Yi|0)

=1 fYi|H(Yi|1)

Conditional on H = 1, {Sn; n ≥ 1} is a RW; Sn = Z1+ · · ·Zn

with the density fY |H(y|1) where Z is a function of Y .

γ r
1(r) = lnE [e Z | H = 1] and r∗ = 1 for γ1(r).

Conditional on H = 0, {Sn; n ≥ 1} is a RW; Sn = Z1+ · · ·Zn

with the density fY |H(y|0) where Z is the same function

of Y .

Under H = 1, the RW has negative drift. With thresholds

at α > 0 and β < 0, Pr{S ≥ α} ≤ e−α
J . This is the probabil-

ity of error given H = 1 and is essentially the probability

of error conditional on any sample path crossing α.

Under H = 0, the RW has positive drift and Pr{SJ ≤ β} ≤
eβ. This also essentially holds for each sample path.
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