6.262: Discrete Stochastic Processes 2/21/11

Lecture 6: From Poisson to Markov Outline:

- Joint conditional densities for Poisson
- Definition of finite-state Markov chains
- Classification of states
- Periodic states and classes
- Ergodic Markov chains

Recall (Section 2.2.2) that the joint density of interarrivals X_{1}, \ldots, X_{n} and arrival epoch S_{n+1} is

$$
\mathrm{f}_{X_{1} \cdots X_{n} S_{n+1}}\left(x_{1}, \ldots x_{n}, s_{n+1}\right)=\lambda^{n+1} \exp \left(-\lambda s_{n+1}\right)
$$

Conditional on $S_{n+1}=t$ (which is Erlang),

$$
\begin{equation*}
\mathrm{f}_{X_{1} \cdots X_{n} \mid S_{n+1}}\left(x_{1}, \ldots x_{n} \mid t\right)=\frac{\lambda^{n+1} e^{-\lambda t}}{\left[\frac{\lambda^{n+1} t^{n} e^{-\lambda t}}{n!}\right]}=\frac{n!}{t^{n}} \tag{1}
\end{equation*}
$$

Similarly (from Eqn. 2.43, text)

$$
\begin{equation*}
\mathrm{f}_{X_{1} \cdots X_{n} \mid N(t)}\left(x_{1}, \ldots x_{n} \mid n\right)=\frac{\lambda^{n+1} e^{-\lambda t}}{\left[\frac{\lambda^{n+1} e^{n} e^{-\lambda t}}{n!}\right]}=\frac{n!}{t^{n}} \tag{2}
\end{equation*}
$$

Both equations are for $0<x_{1}, \ldots, x_{n}$ and $\sum x_{k}<t$.
Both say the conditional density is uniform over the constraint region.

Why are the two equations the same? If we condition X_{1}, \ldots, X_{n} on both $N(t)=n$ and $S_{n+1}=t_{1}$ for any $t_{1}>t$, (2) is unchanged.

By going to the limit $t_{1} \rightarrow t$, we get the first equation. The result, $n!/ t^{n}$, is thus the density conditional on n arrivals in the open interval ($0, t$) and is unaffected by future arrivals.

This density, and its constraint region, is symmetric in the arguments x_{1}, \ldots, x_{n}. More formally, the constraint region (and trivially the density in the constraint region) is unchanged by any permutation of x_{1}, \ldots, x_{n}.
Thus the marginal distribution, $\mathrm{F}_{X_{k} \mid N(t)}\left(x_{k} \mid n\right)$ is the same for $1 \leq k \leq n$. From analyzing $S_{1}=X_{1}$, we then know that $\mathrm{F}_{X_{k} \mid N(t)}^{c}\left(x_{k} \mid n\right)=\left(t-x_{n}\right)^{n} / t^{n}$ for $1 \leq k \leq n$.

For the constraint $S_{n+1}=t$, we have analyzed X_{1}, \ldots, X_{n}, but have not considered X_{n+1}, the final interarrival interval before t.

The reason is that $\sum_{k=1}^{n+1} X_{k}=S_{n+1}=t$, so that these variables do not have an $n+1$ dimensional density.

The same uniform density as before applies to each subset of n of the $n+1$ variables, and the constraint is symmetric over all $n+1$ variables.

This also applies to the constraint $N(t)=n$, using $X_{n+1}^{*}=t-S_{n}$

Definition of finite-state Markov chains

Markov chains are examples of integer-time stochastic processes, $\left\{X_{n} ; n \geq 0\right\}$ where each X_{n} is a rv.

A finite-state Markov chain is a Markov chain in which the sample space for each $r v X_{n}$ is a fixed finite set, usually taken to be $\{1,2, \ldots, \mathbf{M}\}$.

Any discrete integer-time process is characterized by $\operatorname{Pr}\left\{X_{n}=j \mid X_{n-1}=i, X_{n-2}=k, \ldots, X_{0}=m\right\}$ for $n \geq 0$ and all i, j, k, \ldots, m, each in the sample space.

For a finite-state Markov chain, these probabilities are restricted to be

$$
\operatorname{Pr}\left\{X_{n}=j \mid X_{n-1}=i, X_{n-2}=k \ldots X_{0}=m\right\}=P_{i j}
$$

where $P_{i j}$ depends only on i, j and $\mathrm{p}_{X_{0}}(m)$ is arbitrary.

The definition first says that X_{n} depends on the past only through X_{n-1}, and second says that the probabilities don't depend on n for $n \geq 1$.

Some people call this a homogeneous Markov chain and allow $P_{i j}$ to vary with n in general.
The rv's $\left\{X_{n} ; n \geq 0\right\}$ are dependent, but in only a very simple way. X_{n} is called the state at time n and characterizes everything from the past that is relevant for the future.

A Markov chain is completely described by $\left\{P_{i j} ; 1 \leq\right.$ $i, j \leq \mathbf{M}\}$ plus the initial probabilities $p_{X_{0}}(i)$.
We often take the initial state to be a fixed value, and often view the Markov chain as just the set $\left\{P_{i j} ; 1 \leq i, j \leq \mathbf{M}\right\}$, with the initial state viewed as a parameter.

Sometimes we visualize $\left\{P_{i j}\right\}$ in terms of a directed graph and sometimes as a matrix.

a) Graphical

$$
[P]=\left[\begin{array}{cccc}
P_{11} & P_{12} & \cdots & P_{16} \\
P_{21} & P_{22} & \cdots & P_{26} \\
\vdots & \vdots & \vdots: & \vdots \\
P_{61} & P_{62} & \cdots & P_{66}
\end{array}\right]
$$

b) Matrix

The graph emphasizes the possible and impossible (an edge from i to \mathbf{j} explicitly means that $P_{i j}>0$).

The matrix is useful for algebraic and asymptotic issues.

Classification of states

Def: An (n-step) walk is an ordered string of nodes (states), say $\left(i_{0}, i_{1}, \ldots i_{n}\right), n \geq 1$, with a directed arc from i_{m-1} to i_{m} for each $m, 1 \leq m \leq n$.
Def: A path is a walk with no repeated nodes.
Def: A cycle is a walk in which the last node is the same as the first and no other node is repeated.

Walk: (4, 4, 1, 2, 3, 2) Walk: $(4,1,2,3)$
Path: $(4,1,2,3)$
Path: $(6,3,2)$
Cycle: $(2,3,2)$
Cycle: $(5,5)$

It doesn't make any difference whether you regard $(2,3,2)$ and $(3,2,3)$ as the same or different cycles.

Def: A state (node) j is accessible from $i(i \rightarrow j)$ if a walk exists from i to j.
Let $P_{i j}^{n}=\operatorname{Pr}\left\{X_{n}=j \mid X_{0}=i\right\}$. Then if i, k, j is a walk, $P_{i k}>0$ and $P_{k j}>0$, so $P_{i j}^{2} \geq P_{i k} P_{k j}>0$.
Similarly, if there is an n-step walk starting at i and ending at j, then $P_{i j}^{n}>0$.
Thus if $i \rightarrow j$, there is some n for which $P_{i j}^{n}>0$. To the contrary, if j is not accessible from $i(i \nrightarrow j)$, then $P_{i j}^{n}=0$ for all $n \geq 1$.
$i \rightarrow j$ means that, starting in i, entry to j is possible, perhaps with multiple steps. $i \nrightarrow j$ means there is no possibility of ever reaching j from i.
If $i \rightarrow j$ and $j \rightarrow k$, then $i \rightarrow k$. (Concatenate a walk from i to j with a walk from j to k.)

Def: States i and j communicate $(i \leftrightarrow j)$ if $i \rightarrow j$ and $j \rightarrow i$.

Note that if ($i \leftrightarrow j$) and ($j \leftrightarrow k$), then ($i \leftrightarrow k$).
Note that if $(i \leftrightarrow j)$, then there is a cycle that contains both i and j.

Def: A class \mathcal{C} of states is a non-empty set of states such that each $i \in \mathcal{C}$ communicates with every other $j \in \mathcal{C}$ and communicates with no $j \notin \mathcal{C}$.

Def: A state i is recurrent if $j \rightarrow i$ for all j such that $i \rightarrow j$. (i.e., if no state from which there is no return can be entered.) If a state is not recurrent, it is transient.

> 2 and 3 are recurrent 4 and 5 are transient $4 \rightarrow 1,5 \rightarrow 1,1 \nrightarrow 4,5$
> 6 and 1 also transient

Thm: The states in a class are all recurrent or all transient.

Pf: Assume i recurrent and let $\mathcal{S}_{i}=\{j: i \rightarrow j\}$. By recurrence, $j \rightarrow i$ for all $j \in \mathcal{S}_{i}$. Thus $i \leftrightarrow j$ if and only if $j \in \mathcal{S}_{i}$, so \mathcal{S}_{i} is a class. Finally, if $j \in \mathcal{S}_{i}$, then $j \rightarrow k$ implies $i \rightarrow k$ and $k \rightarrow i \rightarrow j$, so j is recurrent.

Periodic states and classes

Def: The period, $d(i)$, of state i is defined as

$$
d(i)=\operatorname{gcd}\left\{n: P_{i i}^{n}>0\right\}
$$

If $d(i)=1, i$ is aperiodic. If $d(i)>1, i$ is periodic with period $d(i)$.

$$
\begin{aligned}
& \text { For example, } P_{44}^{n}>0 \text { for } \\
& n=4,6, \mathbf{8}, \mathbf{1 0} ; d(4)=2 \\
& \text { For state 7, } P_{77}^{n}>0 \text { for } \\
& n=\mathbf{6}, \mathbf{1 0}, \mathbf{1 2}, \mathbf{1 4} ; d(7)=2
\end{aligned}
$$

Thm: All states in the same class have the same period.

See text for proof. It is not very instructive.

A periodic class of states with period $d>1$ can be partitioned into subclasses $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{d}$ so that for $1 \leq \ell<d$, and all $i \in \mathcal{S}_{\ell}, P_{i j}>0$ only for $j \in \mathcal{S}_{\ell+1}$. For $i \in \mathcal{S}_{d}, P_{i j}>0$ only for $j \in \mathcal{S}_{1}$. (see text)

In other words, starting in a given subclass, the state cycles through the d subclasses.

Ergodic Markov chains

The most fundamental and interesting classes of states are those that are recurrent and aperiodic. These are called ergodic. A Markov chain with a single class that is ergodic is an ergodic Markov chain.

Ergodic Markov chains gradually lose their memory of where they started, i.e., $P_{i j}^{n}$ goes to a limit $\pi_{j}>0$ as $n \rightarrow \infty$, and this limit does not depend on the starting state i.

This result is also basic to arbitrary finite-state Markov chains, so we look at it carefully and prove it next lecture.

A first step in showing that $P_{i j}^{n} \rightarrow \pi_{j}$ is the much weaker statement that $P_{i j}^{n}>0$ for all large enough n. This is more a combinatorial issue than probabalistic, as indicated below.

> Starting in state 2 , the state at the next 4 steps is deterministic. For the next 4 steps, there are two possible choices then 3 , etc.

This hints at the following theorem:

Thm: For an ergodic M state Markov chain, $P_{i j}^{n}>0$ for all i, j, and all $n \geq(\mathbf{M}-1)^{2}+1$.

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

