6.262: Discrete Stochastic Processes 2/21/11

Lecture 6: From Poisson to Markov

Outline:

- Joint conditional densities for Poisson
- Definition of finite-state Markov chains
- Classification of states
- Periodic states and classes
- Ergodic Markov chains

Recall (Section 2.2.2) that the joint density of interarrivals X_1, \ldots, X_n and arrival epoch S_{n+1} is

$$f_{X_1 \cdots X_n S_{n+1}}(x_1, \dots, x_n, s_{n+1}) = \lambda^{n+1} \exp(-\lambda s_{n+1})$$

Conditional on $S_{n+1} = t$ (which is Erlang),

$$f_{X_1\cdots X_n|S_{n+1}}(x_1,\dots x_n|t) = \frac{\lambda^{n+1}e^{-\lambda t}}{\left[\frac{\lambda^{n+1}t^ne^{-\lambda t}}{n!}\right]} = \frac{n!}{t^n} \qquad (1)$$

Similarly (from Eqn. 2.43, text)

$$f_{X_1\cdots X_n|N(t)}(x_1,\dots x_n|n) = \frac{\lambda^{n+1}e^{-\lambda t}}{\left[\frac{\lambda^{n+1}t^ne^{-\lambda t}}{n!}\right]} = \frac{n!}{t^n} \qquad (2)$$

Both equations are for $0 < x_1, \ldots, x_n$ and $\sum x_k < t$.

Both say the conditional density is uniform over the constraint region.

Why are the two equations the same? If we condition X_1, \ldots, X_n on both N(t) = n and $S_{n+1} = t_1$ for any $t_1 > t$, (2) is unchanged.

By going to the limit $t_1 \rightarrow t$, we get the first equation. The result, $n!/t^n$, is thus the density conditional on n arrivals in the open interval (0,t) and is unaffected by future arrivals.

This density, and its constraint region, is symmetric in the arguments x_1, \ldots, x_n . More formally, the constraint region (and trivially the density in the constraint region) is unchanged by any permutation of x_1, \ldots, x_n .

Thus the marginal distribution, $F_{X_k|N(t)}(x_k|n)$ is the same for $1 \le k \le n$. From analyzing $S_1 = X_1$, we then know that $F_{X_k|N(t)}^c(x_k|n) = (t - x_n)^n/t^n$ for $1 \le k \le n$.

For the constraint $S_{n+1} = t$, we have analyzed X_1, \ldots, X_n , but have not considered X_{n+1} , the final interarrival interval before t.

The reason is that $\sum_{k=1}^{n+1} X_k = S_{n+1} = t$, so that these variables do not have an n+1 dimensional density.

The same uniform density as before applies to each subset of n of the n+1 variables, and the constraint is symmetric over all n+1 variables.

This also applies to the constraint N(t) = n, using $X_{n+1}^* = t - S_n$

Definition of finite-state Markov chains

Markov chains are examples of integer-time stochastic processes, $\{X_n; n \ge 0\}$ where each X_n is a rv.

A finite-state Markov chain is a Markov chain in which the sample space for each rv X_n is a fixed finite set, usually taken to be $\{1, 2, ..., M\}$.

Any discrete integer-time process is characterized by $Pr\{X_n = j \mid X_{n-1} = i, X_{n-2} = k, ..., X_0 = m\}$ for $n \ge 0$ and all i, j, k, ..., m, each in the sample space.

For a finite-state Markov chain, these probabilities are restricted to be

$$\Pr\{X_n = j \mid X_{n-1} = i, X_{n-2} = k \dots X_0 = m\} = P_{ij}$$

where P_{ij} depends only on i, j and $p_{X_0}(m)$ is arbitrary.

The definition first says that X_n depends on the past only through X_{n-1} , and second says that the probabilities don't depend on n for $n \ge 1$.

Some people call this a homogeneous Markov chain and allow P_{ij} to vary with n in general.

The rv's $\{X_n; n \ge 0\}$ are dependent, but in only a very simple way. X_n is called the state at time n and characterizes everything from the past that is relevant for the future.

A Markov chain is completely described by $\{P_{ij}; 1 \le i, j \le M\}$ plus the initial probabilities $p_{X_0}(i)$.

We often take the initial state to be a fixed value, and often view the Markov chain as just the set $\{P_{ij}; 1 \le i, j \le M\}$, with the initial state viewed as a parameter.

Sometimes we visualize $\{P_{ij}\}$ in terms of a directed graph and sometimes as a matrix.

The graph emphasizes the possible and impossible (an edge from i to j explicitly means that $P_{ij} > 0$).

The matrix is useful for algebraic and asymptotic issues.

Classification of states

Def: An (*n*-step) walk is an ordered string of nodes (states), say $(i_0, i_1, \ldots i_n)$, $n \ge 1$, with a directed arc from i_{m-1} to i_m for each m, $1 \le m \le n$.

Def: A path is a walk with no repeated nodes.

Def: A cycle is a walk in which the last node is the same as the first and no other node is repeated.

Walk: (4, 4, 1, 2, 3, 2) Walk: (4, 1, 2, 3) Path: (4, 1, 2, 3) Path: (6, 3, 2) Cycle: (2, 3, 2) Cycle: (5, 5)

It doesn't make any difference whether you regard (2,3,2) and (3,2,3) as the same or different cycles.

Def: A state (node) j is accessible from $i (i \rightarrow j)$ if a walk exists from i to j.

Let $P_{ij}^n = \Pr\{X_n = j \mid X_0 = i\}$. Then if i, k, j is a walk, $P_{ik} > 0$ and $P_{kj} > 0$, so $P_{ij}^2 \ge P_{ik}P_{kj} > 0$.

Similarly, if there is an *n*-step walk starting at *i* and ending at *j*, then $P_{ij}^n > 0$.

Thus if $i \rightarrow j$, there is some n for which $P_{ij}^n > 0$. To the contrary, if j is not accessible from $i \ (i \not\rightarrow j)$, then $P_{ij}^n = 0$ for all $n \ge 1$.

 $i \rightarrow j$ means that, starting in *i*, entry to *j* is possible, perhaps with multiple steps. $i \not\rightarrow j$ means there is no possibility of ever reaching *j* from *i*.

If $i \rightarrow j$ and $j \rightarrow k$, then $i \rightarrow k$. (Concatenate a walk from *i* to *j* with a walk from *j* to *k*.)

Def: States *i* and *j* communicate $(i \leftrightarrow j)$ if $i \rightarrow j$ and $j \rightarrow i$.

Note that if $(i \leftrightarrow j)$ and $(j \leftrightarrow k)$, then $(i \leftrightarrow k)$.

Note that if $(i \leftrightarrow j)$, then there is a cycle that contains both i and j.

Def: A class C of states is a non-empty set of states such that each $i \in C$ communicates with every other $j \in C$ and communicates with no $j \notin C$.

$$C_1 = \{2, 3\}$$

 $C_2 = \{4, 5\}$
 $C_3 = \{1\}$
 $C_4 = \{6\}$

Why is $\{6\}$ a class

Def: A state *i* is recurrent if $j \rightarrow i$ for all *j* such that $i \rightarrow j$. (i.e., if no state from which there is no return can be entered.) If a state is not recurrent, it is transient.

2 and 3 are recurrent 4 and 5 are transient $4 \rightarrow 1, 5 \rightarrow 1, 1 \not\rightarrow 4, 5$ 6 and 1 also transient

Thm: The states in a class are all recurrent or all transient.

Pf: Assume *i* recurrent and let $S_i = \{j : i \to j\}$. By recurrence, $j \to i$ for all $j \in S_i$. Thus $i \leftrightarrow j$ if and only if $j \in S_i$, so S_i is a class. Finally, if $j \in S_i$, then $j \to k$ implies $i \to k$ and $k \to i \to j$, so j is recurrent.

Periodic states and classes

Def: The period, d(i), of state *i* is defined as

 $d(i) = \gcd\{n : P_{ii}^n > 0\}$

If d(i) = 1, *i* is aperiodic. If d(i) > 1, *i* is periodic with period d(i).

For example, $P_{44}^n > 0$ for n = 4, 6, 8, 10; d(4) = 2For state 7, $P_{77}^n > 0$ for n = 6, 10, 12, 14; d(7) = 2

Thm: All states in the same class have the same period.

See text for proof. It is not very instructive.

A periodic class of states with period d > 1 can be partitioned into subclasses S_1, S_2, \ldots, S_d so that for $1 \le \ell < d$, and all $i \in S_\ell$, $P_{ij} > 0$ only for $j \in S_{\ell+1}$. For $i \in S_d$, $P_{ij} > 0$ only for $j \in S_1$. (see text)

In other words, starting in a given subclass, the state cycles through the d subclasses.

Ergodic Markov chains

The most fundamental and interesting classes of states are those that are recurrent and aperiodic. These are called ergodic. A Markov chain with a single class that is ergodic is an ergodic Markov chain.

Ergodic Markov chains gradually lose their memory of where they started, i.e., P_{ij}^n goes to a limit $\pi_j > 0$ as $n \to \infty$, and this limit does not depend on the starting state *i*.

This result is also basic to arbitrary finite-state Markov chains, so we look at it carefully and prove it next lecture. A first step in showing that $P_{ij}^n \to \pi_j$ is the much weaker statement that $P_{ij}^n > 0$ for all large enough n. This is more a combinatorial issue than probabalistic, as indicated below.

Starting in state 2, the state at the next 4 steps is deterministic. For the next 4 steps, there are two possible choices then 3, etc.

This hints at the following theorem:

Thm: For an ergodic M state Markov chain, $P_{ij}^n > 0$ for all i, j, and all $n \ge (M - 1)^2 + 1$.

MIT OpenCourseWare http://ocw.mit.edu

6.262 Discrete Stochastic Processes Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.