
6.262: Discrete Stochastic Processes 2/23/11 

Lecture 7: Finite-state Markov Chains; the matrix 

approach 

Outline: 

•	 The transition matrix and its powers 

•	 Convergence of [Pn] > 0 

•	 Ergodic Markov chains 

•	 Ergodic unichains


• Other finite-state Markov chains
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Recall that the state Xn of a Markov chain at step 
n depends on the past only through the previous 
step, i.e., 

Pr{Xn = j|Xn−1 = i,Xn−2, . . . , X0} = Pij 

This implies that the joint probability of X0, X1, . . . , Xn 

can be expressed as a function of pX (x0) and of the 
0

transition probabilities, {Pij; 1 ≤ i, j ≤ M}. 

The transition probabilities are conveniently repre
sented in terms of a transition matrix, 

⎡ ⎢ P11 P12 · · · P16
⎤

[P ] =


⎢ ⎥⎢⎢ P21 P22 · · · P26⎢ · · · · · · ⎢⎢ · · · · · · ⎢



⎥⎥⎥
⎣ · · · · · · 

⎥
P61 P62 · · 

⎥



· P66 

⎥⎥⎦
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If we condition only on the state at time 0, and 

define  Pn = Pr{Xn = j  X = i , then, starting with ij | 0 }
n = 2, we have � 2Pij = Pr  j

k 

{X2 = |X1 = k,X0 = i} Pr{X1 = k|X0 = i}� 
= PikPkj


k

 

Note that k PikPkj is the i, j term of the product of 

the transition

�
 matrix [P ] with itself, which is [P 2]. 

Thus the 2-step transition probabilities { 2P ; 1 ≤ i, j ij ≤
M} are simply the elements of [P 2]. 
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Iterating to find Pn for successively larger n, ij

 
n P 
 =ij  

�
Pr{Xn =j|Xn 1=k} Pr{Xn 1=k|X0 = − − i

k


}

= −

 

� 
n 1P Pik
 kj 

k


Thus Pn is the i, j element of [Pn], i.e., the matrix ij

[  ] to the th P n power. 

Computational hack: To find high powers of [P ], 
calculate [P 2], [P 4], [P 8], etc. and then multiply the 
required powers of 2. 

Chapman-Kolmogorov eqns: Since [Pm+n] = [Pm][Pn], � m+n mP = n P Pij k ik kj 
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Convergence of [Pn] > 0


An important question for Markov chains, and one 
that effects almost everything else, is whether the 
effect of the initial state dies out with time, i.e., 
whether limn  Pn = πj for all  →∞ i and j, where πj is a ij
function only of j and not of i or n. 

If this limit exists, we can multiply both sides by Pjk 
and sum over j, getting 

 
lim 

 

�
n P = 

n→∞ ijPjk 
j 

� 
πjPjk 

j 

+1 The left side is lim n
n→∞ P = πk. Thus if this limit ik  

exists, the vector �π must satisfy πk = 
�

j πjPjk for 
each k. 
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In matrix terms, does limn and →∞[Pn] exist, is each 
row is the same vector, �π? If so, then �π must satisfy 
the matrix equation �π = �π[P ]. 

Def: A probability vector is a vector �π = (π1, . . . , πM) 
 

for which each πi is nonnegative and i πi = 1. A 
probability vector �π is called a steady-state

�
 vector 

for the transition matrix [P ] if �π = �π[P ]. 

One would now think that we have reduced the 
question of whether limn→∞[Pn] exists to the study 
of the steady-state equation �π = �π[P ]. 

Surprisingly, studying limn→∞[Pn] is relatively sim
ple, whereas understanding the set of solutions to 
�π = �π[P ] is more complicated. We will find that 
�π = �π[P ] always has one (and often more) prob
ability vector solutions, but this does’t imply that 
limn→∞[Pn] exists. 
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Ergodic Markov chains


Another way to express that limn→∞[Pn] converges 
to a matrix of equal rows �π is the statement that, 
for each column j, limn→∞ Pn = πij j for each i. 

The following theorem demonstrates this type of 
convergence, and some stronger results, for ergodic 
Markov chains. 

Thm: Let an ergodic finite-state Markov chain have 
transition matrix [P ]. Then for each j, maxi P

n is ij
nonincreasing in , min n n i P is nondecreasing in n, ij
and 

. 
lim   max nP = lim min n P = 0ij ij  πj >  
n→∞ i n→∞ i 

with exponential convergence in n 

7




The key to this theorem is the pair of statements 
that maxi P

n is nonincreasing in n and minij i P
n is non-ij

decreasing in n. 

It turns out, with an almost trivial proof, that these 
statements are true for all Markov chains, so we 
first establish this as a lemma. 

Lemma 1: Let [P ] be the transition matrix of an 
arbitrary finite-state Markov chain. Then for each 
j, max  

i P
n is nonincreasing in n and mini P

n is non-ij ij
decreasing in n. 

Example 1: Consider the 2-state chain with P12 = 
P21 = 1. Then Pn alternates between 1 and 0 for 12

increasing n and Pn alternates between 0 and 1.
22 
The maximum of Pn and Pn is 1, which is nonin12 22 
creasing, and the minimum is 0. 
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Lemma 1: Let [P ] be the transition matrix of an 

arbitrary finite-state Markov chain. Then for each 

j, max   
i P

n is nonincreasing in n and mini P
n is non-ij ij

decreasing in n. 

Example 2: Consider the 2-state ergodic chain with


    n  3  3 P12 =
9P21 = 3/4. Then P = , , , . . . for increas12 4 8 16

n 1 5 ing n and  7P = , , , . . ..22 4 8 16

Each sequence oscillates while approaching 1/2, but


max(  Pn ) = 3 , P n  , 5 , 9 , . . . which is decreasing to12 22 4 8 16
ward 1/2. Similarly the minimum approaches 1/2 

  min( n  n ) = 1  3 from below, P , 7 , P , , . . . 12 22 4 8 16
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Lemma 1: Let [P ] be the transition matrix of an 
arbitrary finite-state Markov chain. Then for each 

 n j, maxi P is nonincreasing in n and min Pn is non-ij i ij
decreasing in n. 

Proof: For any states i, j and any step n, 
 n+1 = 

�
n P PikPij kj 

 

�k  
≤ Pik max nP�j

�
k 

= max n P�j
� 

Since this holds for all states i, it holds for the max
imizing i, so max n+1 

i P ≤ max� P
n. Replacing maxima ij �j

with minima and reversing inequalities, 

min n+1 Pij ≥ min nP . �ji � 
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Before completing the proof of the theorem, we 
specialize the theorem to the case where [P ] > 0, 
i.e., where Pij > 0 for all i, j. 

Lemma 2: Let [P ] > 0 be the transition matrix of 
a finite-state Markov chain and let α = mini,j Pij. 
Then for all states j and all n ≥ 1: 

+1max
�  

 n  P − min n+1 P ≤ max n P −  min nP (1  2α). ij � �j �ji� ij i   � � 

�
−

max n P  − min n (1 − 2 nP  ≤ α) . �j �j
� �

lim max n P =  lim min nP > 0. �jn→∞ � n→∞ �j
� 

Note that Lemma 1 implies that lim max n 
n→∞ � P�j

must exist since this is the limit of a decreasing 
non-negative sequence. This lemma then shows 
the maxima and minima both have the same limit. 
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Proof of lemma 2: We tighten the proof of lemma 

1 slightly to make use of the positive elements. For 

a given n and j, let �min be a state that minimizes 

Pn over i. Thenij 

 n+1 P = nPij

�
ikPkj 

k � 
≤ nPik max n P +�j  Pi� min P

min �j 
� � 

k=�min 

= (1 − Pi� )  max n nP +  P
min �j i� min P

min �j 
�  

n
� �  

 − max n = max − min n P P�j i� P P
min �j �j

� 

�

 

� � �   

≤ max n P�j − α  n maxP�j
�  �

− min nP�j
� 

 

�



max n+1 n n n
P ≤ max P 

�
max P − min P�ji ij �j 

� 
− α �j 

� �

�
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We have shown that

	  

+1 max n  nP ≤ max n nP −  α �j

�
max P . ij �j �ji �	 �

− min P
� 

�
Interchanging max with min and ≤ with ≥, we get


+1 n min n ≥ min +  
�	  

max n n P P α P .ij �j �ji �	 �
− min P

� 

�
 �j

Subtracting these equations, 
	  

max n+1  P   n   n min n+1 P  maxP minP (1  2α). 
	 iji

− ij

�
�j − �ji 

≤
� � 

�
−

Since min� P�j	≥ α and max� P�j ≤ 1 − α, 

max P�j − min P�j ≤ 1 α
�	 � 

− 2  

Iterating on	 n, 

n max P − min n P�j �j
�	 � 

≤ (1 − 2α)n 
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Finally, we can get back to arbitrary finite-state er
godic chains with transition matrix [P ]. 

We have shown that [Ph] is positive for h = (M 
1)2 

−
+ 1, so we can apply Lemma 2 to [Ph], with 

α = min Ph 
ij . ij

We don’t much care about the value of α, but only 
that it is positive. Then 

lim max hm = min hm P P = π�j �j � > 0 
m→∞ � � 

To show that the limit applies for all n rather than 
than just multiples of h, we use Lemma 1, showing 
that max� P

n is non-increasing in n, so it must have �j

the same limit as max� P
hm . The same argument �j

applies for the minima. QED 
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Ergodic unichains


We have now seen that for ergodic chains, limn→∞ Pn = ij
πj for all i where �π is a probability vector. The re
sulting vector �π is also a steady-state vector and is 
the unique probability vector solution to �π[P ] = �π 
(see Thm 3.3.1). 

It is fairly easy to extend this result to a more gen
eral class called ergodic unichains. These are chains 
containing a single ergodic class along with an ar
bitrary set of transient states. 

If a state is in a singleton transient class, then there 
is a fixed probability, say α, of leaving the class at 
each step, and the probability of remaining in the 
class for more than  n steps is (1 − α)n. 
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Th probability of remaining in an arbitrary set of


transient states also decays to 0 exponentially with


n. Essentially each transient state has at least one 

path to a recurrent state, and one of those paths 

must be taken eventually. 

For an ergodic unichain, the ergodic class is even

tually entered, and then steady state in that class 

is reached. 

For every state j then, 

lim max n P =ij  lim min n P =ij  πjn→∞ i n→∞ i 

The difference here is that πj = 0 for each transient 

state and πj > 0 for each recurrent state. 
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Other finite-state Markov chains


First consider a Markov chain with several ergodic 

classes, C1, . . . , Cm. The classes don’t communicate 

and should be considered separately. 

If one insists on analyzing the entire chain, [P ] will 

have m independent steady state vectors, one nonzero 

on each class. [Pn] will then converge, but the rows 

will not all be the same. 

There will be m sets of rows, one for each class, 

and the row for class k will be nonzero only for the 

elements of that class. 
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Next consider a periodic recurrent chain of period 

d. This can be separated into d subclasses with a 

cyclic rotation between them. 

If we look at [Pd], we see that each subclass be

comes an ergodic class, say C nd
1, . . . , Cd. Thus limn [P ] →∞

exists. 

A steady state is reached within each subclass, but 

the chain rotates from one subclass to another. 
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