6.262: Discrete Stochastic Processes 2/28/11

Lecture 8: Markov eigenvalues and eigenvectors

Outline:

- Review of ergodic unichains
- Review of basic linear algebra facts
- Markov chains with 2 states
- Distinct eigenvalues for M > 2 states
- M states and M independent eigenvectors
- The Jordan form

1

Recall that for an ergodic finite-state Markov chain, the transition probabilities reach a limit in the sense that $\lim_{n\to\infty} P_{ij}^n = \pi_j$ where $\vec{\pi} = (\pi_1, \dots, \pi_M)$ is a strictly positive probability vector.

Multiplying both sides by P_{jk} and summing over j,

$$\pi_k = \lim_{n \to \infty} \sum_j P_{ij}^n P_{jk} = \sum_j \pi_j P_{jk}$$

Thus $\vec{\pi}$ is a steady-state vector for the Markov chain, i.e., $\vec{\pi} = \vec{\pi}[P]$ and $\vec{\pi} \ge 0$.

In matrix terms, $\lim_{n\to\infty} [P^n] = \vec{e}\vec{\pi}$ where $\vec{e} = (1, 1, ..., 1)^T$ is a column vector and $\vec{\pi}$ is a row vector.

The same result almost holds for ergodic unichains, i.e., one ergodic class plus an arbitrary set of transient states.

The sole difference is that the steady-state vector is positive for all ergodic states and 0 for all transient states.

$$[P] = \begin{bmatrix} P_T & P_{T\mathcal{R}} \\ \hline \\ 0 & P_{\mathcal{R}} \end{bmatrix} \text{ where } [P_T] = \begin{bmatrix} P_{11} & \cdots & P_{1t} \\ \cdots & \cdots & \cdots \\ P_{t1} & \cdots & P_{tt} \end{bmatrix}$$

The idea is that each transient state eventually has a transition (via $[P_{TR}]$) to a recurrent state, and the class of recurrent states lead to steady state as before.

3

Review of basic linear algebra facts

Def: A complex number λ is an eigenvalue of a real square matrix [A], and a complex vector $\vec{v} \neq 0$ is a right eigenvector of [A], if $\lambda \vec{v} = [A]\vec{v}$.

For every stochastic matrix (the transition matrix of a finite-state Markov chain [P]), we have $\sum_j P_{ij} = 1$ and thus $[P]\vec{e} = \vec{e}$.

Thus $\lambda = 1$ is an eigenvalue of an arbitrary stochastic matrix [P] with right eigenvector \vec{e} .

An equivalent way to express the eigenvalue/eigenvector equation is that $[P - \lambda I]\vec{v} = 0$ where I is the identity matrix.

Def: A square matrix [A] is singular if there is a vector $\vec{v} \neq 0$ such that $[A]\vec{v} = 0$.

Thus λ is an eigenvalue of [P] if and only if (iff) $[P - \lambda I]$ is singular for some $\vec{v} \neq 0$.

Let $\vec{a}_1, \ldots, \vec{a}_M$ be the the columns of [A]. Then [A] is singular iff $\vec{a}_1, \ldots, \vec{a}_M$ are linearly dependent.

The square matrix [A] is singular iff the rows of [A] are linearly dependent and iff the determinant det[A] of [A] is 0.

Summary: λ is an eigenvalue of [P] iff $[P - \lambda I]$ is singular, iff det $[P - \lambda I] = 0$, iff $[P]\vec{v} = \lambda \vec{v}$ for some $\vec{v} \neq 0$, and iff $\vec{u}[P] = \lambda \vec{u}$ for some $\vec{u} \neq 0$.

E
5
-

For every stochastic matrix [P], $[P]\vec{e} = \vec{e}$ and thus [P - I] is singular and there is a row vector $\pi \neq 0$ such that $\vec{\pi}[P] = \vec{\pi}$.

This does <u>not</u> show that there is a probability vector $\vec{\pi}$ such that $\vec{\pi}[P] = \vec{\pi}$, but we already know there is such a probability vector (i.e., a steady-state vector) if [P] is the matrix of an ergodic unichain.

We show later that there is a steady-state vector π for all Markov chains.

The determinant of an M by M matrix can be determined as

$$\det A = \sum_{\mu} \pm \prod_{i=1}^{\mathsf{M}} A_{i,\mu(i)}$$

where the sum is over all permutations μ of the integers $1, \ldots, M$. Plus is used for each even permutation and minus for each odd.

The important facet of this formula for us is that $det[P - \lambda I]$ must be a polynomial in λ of degree M.

Thus there are M roots of the equation $det[P - \lambda I] = 0$, and consequently M eigenvalues of [P].

Some of these M eigenvalues might be the same, and if k of these roots are equal to λ , the eigenvalue λ is said to have algebraic multiplicity k.

Markov chains with 2 states

$\pi_1 P_{12} + \pi_2 P_{22} = \lambda \pi_2$	$P_{21}\nu_1 + P_{22}\nu_2 = \lambda\nu_2$
left eigenvector	right eigenvector

$$\det[P - \lambda I] = (P_{11} - \lambda)(P_{22} - \lambda) - P_{12}P_{21}$$

 $\lambda_1 = 1;$ $\lambda_2 = 1 - P_{12} - P_{21}$

If $P_{12} = P_{21} = 0$ (the chain has 2 recurrent classes), then $\lambda = 1$ has multiplicity 2. Otherwise $\lambda = 1$ has multiplicity 1.

If $P_{12} = P_{21} = 1$ (the chain is periodic), then $\lambda_2 = -1$. Otherwise $|\lambda_2| < 1$.

7

$$\begin{aligned} \pi_1 P_{11} + \pi_2 P_{21} &= \lambda \pi_1 & P_{11} \nu_1 + P_{12} \nu_2 &= \lambda \nu_1 \\ \pi_1 P_{12} + \pi_2 P_{22} &= \lambda \pi_2 & P_{21} \nu_1 + P_{22} \nu_2 &= \lambda \nu_2 \end{aligned} .$$

$$\lambda_1 = 1;$$
 $\lambda_2 = 1 - P_{12} - P_{22}$

Assume throughout that either $P_{12} > 0$ or $P_{21} > 0$. Then

$$\vec{\pi}^{(1)} = \left(\frac{P_{21}}{P_{12}+P_{21}}, \frac{P_{12}}{P_{12}+P_{21}}\right) \qquad \vec{\nu}^{(1)} = (1, 1)^{\mathsf{c}} \vec{\pi}^{(2)} = (1, -1) \qquad \vec{\nu}^{(2)} = \left(\frac{P_{12}}{P_{12}+P_{21}}, \frac{-P_{21}}{P_{12}+P_{21}}\right)^{\mathsf{c}}$$

Note that $\vec{\pi}^{(i)}\vec{\nu}^{(j)} = \delta_{ij}$. In general, if $\vec{\pi}^{(i)}[P] = \lambda_i \vec{\pi}^{(i)}$ and $[P]\vec{\nu}^{(i)} = \lambda_i \vec{\nu}^{(i)}$ for i = 1, ..., M, then $\vec{\pi}^{(i)}\vec{\nu}^{(j)} = 0$ if $\lambda_i \neq \lambda_j$. To see this,

$$\lambda_i \vec{\pi}^{(i)} \vec{\nu}^{(j)} = \vec{\pi}^{(i)} [P] \vec{\nu}^{(j)} = \vec{\pi}^{(i)} (\lambda_j \vec{\nu}^{(j)}) = \lambda_j \vec{\pi}^{(i)} \vec{\nu}^{(j)}$$

so if $\lambda_i \neq \lambda_j$, then $\vec{\pi}_i \vec{\nu}_j = 0$. Normalization (of either $\vec{\pi}_i$ or $\vec{\nu}_i$) can make $\vec{\pi}_i \vec{\nu}_i = 1$ for each *i*.

9			
9		h	
9			
~			
-			

Note that the equations

$$P_{11}\nu_1^{(i)} + P_{12}\nu_2^{(i)} = \lambda_i\nu_1^{(i)};$$
 $P_{21}\nu_1^{(i)} + P_{22}\nu_2^{(i)} = \lambda_i\nu_2^{(i)}$
can be rewritten in matrix form as

$$[P][U] = [U][\Lambda] \quad \text{where}$$

$$[\Lambda] = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix} \quad \text{and} \quad [U] = \begin{bmatrix} \nu_1^{(1)} & \nu_1^{(2)}\\ \nu_2^{(1)} & \nu_2^{(2)} \end{bmatrix},$$

Since $\vec{\pi}^{(i)}\vec{\nu}^{(j)} = \delta_{ij}$, we see that

$$\begin{bmatrix} \pi_1^{(1)} & \pi_2^{(1)} \\ \pi_1^{(2)} & \pi_2^{(2)} \end{bmatrix} \begin{bmatrix} \nu_1^{(1)} & \nu_1^{(2)} \\ \nu_2^{(1)} & \nu_2^{(2)} \end{bmatrix} = [I],$$

so [U] is invertible and $[U^{-1}]$ has $\vec{\pi}^{(1)}$ and $\vec{\pi}^{(2)}$ as rows. Thus $[P] = [U][\Lambda][U^{-1}]$ and

$$[P^{2}] = [U][\Lambda][U^{-1}][U][\Lambda][U^{-1}] = [U][\Lambda^{2}][U^{-1}]$$

Similarly, for any $n \ge 2$,

$$[P^{n}] = [U][\Lambda^{n}][U^{-1}]$$
(1)

Eq. 3.29 in text has a typo and should be (1) above.

We can solve (1) in general (if all M eigenvalues are distinct) as easily as for M = 2.

Break $[\Lambda]^n$ into M terms,

$$[\Lambda]^n = [\Lambda_1^n] + \dots + [\Lambda_M^n]$$
 where

 $[\Lambda^n_i]$ has λ^n_i in position (i,i) and has zeros elsewhere. Then

$$[P^n] = \sum_{i=1}^{\mathsf{M}} \lambda_i^n \vec{\nu}^{(i)} \vec{\pi}^{(i)}$$

1.	1
Τ.	L

$$[P^n] = \sum_{i=1}^{\mathsf{M}} \lambda_i^n \vec{\nu}^{(i)} \vec{\pi}^{(i)}$$

$$\vec{\pi}^{(1)} = \left(\frac{P_{21}}{P_{12} + P_{21}}, \frac{P_{12}}{P_{12} + P_{21}}\right) \qquad \vec{\nu}^{(1)} = (1, 1)^{\mathsf{c}} \vec{\pi}^{(2)} = (1, -1) \qquad \vec{\nu}^{(2)} = \left(\frac{P_{12}}{P_{12} + P_{21}}, \frac{-P_{21}}{P_{12} + P_{21}}\right)^{\mathsf{c}}$$

The steady-state vector is $\vec{\pi} = \vec{\pi}^{(1)}$ and

$$\vec{\nu}^{(1)}\vec{\pi} = \begin{bmatrix} \pi_1 & \pi_2 \\ \pi_1 & \pi_2 \end{bmatrix} \qquad \vec{\nu}^{(2)}\vec{\pi}^{(2)} = \begin{bmatrix} \pi_2 & -\pi_2 \\ -\pi_1 & \pi_1 \end{bmatrix}$$
$$[P^n] = \begin{bmatrix} \pi_1 + \pi_2\lambda_2^n & \pi_2 - \pi_2\lambda_2^n \\ \pi_1 - \pi_1\lambda_2^n & \pi_2 + \pi_1\lambda_2^n \end{bmatrix}$$

We see that $[P^n]$ converges to $\vec{e} \vec{\pi}$, and the rate of convergence is λ_2 . This solution is exact. It essentially extends to arbitrary finite M.

Recall that, for an M state Markov chain, $det[P - \lambda I]$ is a polynomial of degree M in λ . It thus has M roots (eigenvalues), which we assume here to be distinct.

Each eigenvalue λ_i has a right eigenvector $\vec{\nu}^{(i)}$ and a left eigenvector $\vec{\pi}^{(i)}$. Also $\vec{\pi}^{(i)}\vec{\nu}^{(j)} = 0$ for each $i, j \neq i$.

By scaling $\vec{\nu}^{(i)}$ or $\vec{\pi}^{(i)}$, we can satisfy $\vec{\pi}^{(i)}\vec{\nu}^{(i)} = 1$.

Let [*U*] be the matrix with columns $\vec{\nu}^{(1)}$ to $\vec{\nu}^{(M)}$ and let [*V*] have rows $\vec{\pi}^{(1)}$ to $\vec{\pi}^{(M)}$.

Then [V][U] = I, so $[V] = [U^{-1}]$. Thus the eigenvectors $\vec{\nu}^{(1)}$ to $\vec{\nu}^{(\mathsf{M})}$ are linearly independent and span M space. Same with $\vec{\pi}^{(1)}$ to $\vec{\pi}^{(\mathsf{M})}$.

Putting the right eigenvector equations together, $[P][U] = [U][\Lambda]$. Postmultiplying by $[U^{-1}]$, this becomes

$$[P] = [U][\Lambda][U^{-1}]$$
$$[P^n] = [U][\Lambda^n][U^{-1}]$$

Breaking $[\Lambda^n]$ into a sum of M terms as before,

$$[P^n] = \sum_{i=1}^{\mathsf{M}} \lambda_i^n \vec{\nu}^{(i)} \vec{\pi}^{(i)}$$

Since each row of [P] sums to 1, \vec{e} is a right eigenvector of eigenvalue 1.

Thm: The left eigenvector $\vec{\pi}$ of eigenvalue 1 is a steady-state vector if it is normalized to $\vec{\pi}\vec{e} = 1$.

Thm: The left eigenvector $\vec{\pi}$ of eigenvalue 1 is a steady-state vector if it is normalized to $\vec{\pi}\vec{e} = 1$.

Pf: There must be a left eigenvector $\vec{\pi}$ for eigenvalue 1. For every $j, 1 \le j \le M$, $\pi_j = \sum_k \pi_k P_{kj}$. Taking magnitudes,

$$|\pi_j| \le \sum_k |\pi_k| P_{kj} \tag{2}$$

with equality iff $\pi_j = |\pi_j|e^{i\phi}$ for all j and some ϕ . Summing over j, $\sum_j |\pi_j| \leq \sum_k |\pi_k|$. This is satisfied with equality, so (2) is satisfied with equality for each j.

Thus $(|\pi_1|, |\pi_2|, \dots, |\pi_M|)$ is a nonnegative vector satisfying the steady-state vector equation. Normalizing to $\sum_i |\pi_i| = 1$, we have a steady-state vector.

1	5
+	9

Thm: Every eigenvalue λ_{ℓ} satisfies $|\lambda_{\ell}| \leq 1$.

Pf: We have seen that if $\vec{\pi}^{(\ell)}$ is a left eigenvector of [P] with eigenvalue λ_{ℓ} , then it is also a left eigenvector of $[P^n]$ with eigenvalue λ_{ℓ}^n . Thus

$$\lambda_{\ell}^{n} \pi_{j}^{(\ell)} = \sum_{i} \pi_{i}^{(\ell)} P_{ij}^{n} \quad \text{for all } j.$$
$$|\lambda_{\ell}^{n}| |\pi_{j}^{(\ell)}| \leq \sum_{i} |\pi_{i}^{(\ell)}| P_{ij}^{n} \quad \text{for all } j.$$

Let β be the largest of $|\pi_j^{(\ell)}|$ over j. For that maximizing j ,

$$|\lambda_\ell^n|\,eta~\leq~\sum_ieta\,P_{ij}^n~\leqeta{\sf M}$$

Thus $|\lambda_{\ell}^n| \leq M$ for all n, so $|\lambda_{\ell}| \leq 1$.

These two theorems are valid for all finite-state Markov chains. For the case with M distinct eigenvalues, we have

$$[P^n] = \sum_{i=1}^{\mathsf{M}} \lambda_i^n \vec{\nu}^{(i)} \vec{\pi}^{(i)}$$

If the chain is an ergodic unichain, then one eigenvalue is 1 and the rest are strictly less than 1 in magnitude.

Thus the rate at which $[P^n]$ approaches $\vec{e}\vec{\pi}$ is determined by the second largest eigenvalue.

If [P] is a periodic unichain with period d, then there are d eigenvalues equally spaced around the unit circle and $[P^n]$ does not converge.

17

M states and M independent eigenvectors

Next assume that one or more eigenvalues have multiplicity greater than 1, but that if an eigenvalue has multiplicity k, then it has k linearly independent eigenvectors.

We can choose the left eigenvectors of a given eigenvalue to be orthonormal to the right eigenvectors of that eigenvalue.

After doing this and defining [U] as the matrix with columns $\vec{\nu}^{(1)}, \ldots, \vec{\nu}^{(M)}$, we see [U] is invertible and that $[U^{-1})$ is the matrix with rows $\vec{\pi}^{(1)}, \ldots, \vec{\pi}^{(M)}$. We then again have

$$[P^n] = \sum_{i=1}^{\mathsf{M}} \lambda_i^n \vec{\nu}^{(i)} \vec{\pi}^{(i)}$$

Example: Consider a Markov chain consisting of ℓ ergodic sets of states.

Then each ergodic set will have an eigenvalue equal to 1 with a right eigenvector equal to 1 on the states of that set and 0 elsewhere.

There will also be a 'steady-state' vector, nonzero only on that set of states.

Then $[P^n]$ will converge to a block diagonal matrix where for each ergodic set, the rows within that set are the same.

19

The Jordan form

Unfortunately, it is possible that an eigenvalue of algebraic multiplicity $k \ge 2$ has fewer than k linearly independent eigenvectors.

The decomposition $[P] = [U][\Lambda][U^{-1}]$ can be replaced in this case by a Jordan form, $[P] = [U][J][U^{-1}]$ where [J] has the form

$$[J] = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 & 0 \\ 0 & 0 & \lambda_2 & 1 & 0 \\ 0 & 0 & 0 & \lambda_2 & 0 \\ 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix}$$

The eigenvalues are on the main diagonal and ones are on the next diagonal up where needed for deficient eigenvectors. Example:

$$[P] = \begin{bmatrix} 1/2 & 1/2 & 0\\ 0 & 1/2 & 1/2\\ 0 & 0 & 1 \end{bmatrix}.$$

The eigenvalues are 1 and 1/2, with algebraic multiplicity 2 for $\lambda = 1/2$.

There is only one eigenvector (subject to a scaling constant) for the eigenvalue 1/2. $[P^n]$ approaches steady-state as $n(1/2)^n$.

Fortunately, if [P] is stochastic, the eigenvalue 1 always has as many linearly independent eigenvectors as its algebraic multiplicity.

21

6.262 Discrete Stochastic Processes Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.