6.262: Discrete Stochastic Processes 2/28/11

Lecture 8: Markov eigenvalues and eigenvectors

Outline:

- Review of ergodic unichains
- Review of basic linear algebra facts
- Markov chains with 2 states
- Distinct eigenvalues for $\mathrm{M}>2$ states
- M states and M independent eigenvectors
- The Jordan form

Recall that for an ergodic finite-state Markov chain, the transition probabilities reach a limit in the sense that $\lim _{n \rightarrow \infty} P_{i j}^{n}=\pi_{j}$ where $\vec{\pi}=\left(\pi_{1}, \ldots, \pi_{\mathbf{M}}\right)$ is a strictly positive probability vector.

Multiplying both sides by $P_{j k}$ and summing over j,

$$
\pi_{k}=\lim _{n \rightarrow \infty} \sum_{j} P_{i j}^{n} P_{j k}=\sum_{j} \pi_{j} P_{j k}
$$

Thus $\vec{\pi}$ is a steady-state vector for the Markov chain, i.e., $\vec{\pi}=\vec{\pi}[P]$ and $\vec{\pi} \geq 0$.

In matrix terms, $\lim _{n \rightarrow \infty}\left[P^{n}\right]=\vec{e} \vec{\pi}$ where $\vec{e}=(1,1, \ldots, 1)^{\top}$ is a column vector and $\vec{\pi}$ is a row vector.

The same result almost holds for ergodic unichains, i.e., one ergodic class plus an arbitrary set of transient states.

The sole difference is that the steady-state vector is positive for all ergodic states and 0 for all transient states.

$$
[P]=\left[\begin{array}{c|c}
{\left[P_{\mathcal{T}}\right]} & {\left[P_{\mathcal{T}}\right]} \\
\hline[0] & {\left[P_{\mathcal{R}}\right]}
\end{array}\right] \quad \text { where } \quad\left[P_{\mathcal{T}}\right]=\left[\begin{array}{ccc}
P_{11} & \cdots & P_{1 t} \\
\cdots & \cdots & \cdots \\
P_{t 1} & \cdots & P_{t t}
\end{array}\right]
$$

The idea is that each transient state eventually has a transition (via $\left[P_{T R}\right]$) to a recurrent state, and the class of recurrent states lead to steady state as before.

Review of basic linear algebra facts
Def: A complex number λ is an eigenvalue of a real square matrix [A], and a complex vector $\vec{v} \neq 0$ is a right eigenvector of $[A]$, if $\lambda \vec{v}=[A] \vec{v}$.

For every stochastic matrix (the transition matrix of a finite-state Markov chain $[P]$), we have $\sum_{j} P_{i j}=1$ and thus $[P] \vec{e}=\vec{e}$.

Thus $\lambda=1$ is an eigenvalue of an arbitrary stochastic matrix $[P]$ with right eigenvector \vec{e}.

An equivalent way to express the eigenvalue/eigenvector equation is that $[P-\lambda I] \vec{v}=0$ where I is the identity matrix.

Def: A square matrix $[A]$ is singular if there is a vector $\vec{v} \neq 0$ such that $[A] \vec{v}=0$.

Thus λ is an eigenvalue of $[P]$ if and only if (iff) [$P-\lambda I$] is singular for some $\vec{v} \neq 0$.

Let $\vec{a}_{1}, \ldots, \vec{a}_{\mathbf{M}}$ be the the columns of $[A]$. Then [A] is singular iff $\vec{a}_{1}, \ldots, \vec{a}_{\mathbf{M}}$ are linearly dependent.

The square matrix $[A]$ is singular iff the rows of $[A]$ are linearly dependent and iff the determinant $\operatorname{det}[A]$ of $[A]$ is $\mathbf{0}$.

Summary: λ is an eigenvalue of $[P]$ iff $[P-\lambda I]$ is singular, iff $\operatorname{det}[P-\lambda I]=0$, iff $[P] \vec{v}=\lambda \vec{v}$ for some $\vec{v} \neq 0$, and iff $\vec{u}[P]=\lambda \vec{u}$ for some $\vec{u} \neq 0$.

For every stochastic matrix $[P],[P] \vec{e}=\vec{e}$ and thus [$P-I$] is singular and there is a row vector $\pi \neq 0$ such that $\vec{\pi}[P]=\vec{\pi}$.

This does not show that there is a probability vector $\vec{\pi}$ such that $\vec{\pi}[P]=\vec{\pi}$, but we already know there is such a probability vector (i.e., a steady-state vector) if $[P]$ is the matrix of an ergodic unichain.

We show later that there is a steady-state vector π for all Markov chains.

The determinant of an M by M matrix can be determined as

$$
\operatorname{det} A=\sum_{\mu} \pm \prod_{i=1}^{\mathbf{M}} A_{i, \mu(i)}
$$

where the sum is over all permutations μ of the integers $1, \ldots, M$. Plus is used for each even permutation and minus for each odd.

The important facet of this formula for us is that $\operatorname{det}[P-\lambda I]$ must be a polynomial in λ of degree \mathbf{M}.

Thus there are \mathbf{M} roots of the equation $\operatorname{det}[P-\lambda I]=$ 0 , and consequently M eigenvalues of $[P]$.

Some of these M eigenvalues might be the same, and if k of these roots are equal to λ, the eigenvalue λ is said to have algebraic multiplicity k.

Markov chains with 2 states

$$
\begin{array}{cc}
\pi_{1} P_{11}+\pi_{2} P_{21}=\lambda \pi_{1} & P_{11} \nu_{1}+P_{12} \nu_{2}=\lambda \nu_{1} \\
\pi_{1} P_{12}+\pi_{2} P_{22}=\lambda \pi_{2} & P_{21} \nu_{1}+P_{22} \nu_{2}=\lambda \nu_{2} \\
\text { left eigenvector } & \text { right eigenvector }
\end{array}
$$

$$
\begin{gathered}
\operatorname{det}[P-\lambda I]=\left(P_{11}-\lambda\right)\left(P_{22}-\lambda\right)-P_{12} P_{21} \\
\lambda_{1}=1 ; \quad \lambda_{2}=1-P_{12}-P_{21}
\end{gathered}
$$

If $P_{12}=P_{21}=0$ (the chain has 2 recurrent classes), then $\lambda=1$ has multiplicity 2 . Otherwise $\lambda=1$ has multiplicity 1 .

If $P_{12}=P_{21}=1$ (the chain is periodic), then $\lambda_{2}=$ -1 . Otherwise $\left|\lambda_{2}\right|<1$.

$$
\begin{gathered}
\pi_{1} P_{11}+\pi_{2} P_{21}=\lambda \pi_{1} \quad P_{11} \nu_{1}+P_{12} \nu_{2}=\lambda \nu_{1} \\
\pi_{1} P_{12}+\pi_{2} P_{22}=\lambda \pi_{2} \quad P_{21} \nu_{1}+P_{22} \nu_{2}=\lambda \nu_{2} \\
\lambda_{1}=1 ; \quad \lambda_{2}=1-P_{12}-P_{21}
\end{gathered}
$$

Assume throughout that either $P_{12}>0$ or $P_{21}>0$. Then

$$
\begin{array}{ll}
\vec{\pi}^{(1)}=\left(\frac{P_{21}}{P_{12}+P_{21}}, \frac{P_{12}}{P_{12}+P_{21}}\right) & \vec{\nu}^{(1)}=(1,1)^{c} \\
\vec{\pi}^{(2)}=(1,-1) & \vec{\nu}^{(2)}=\left(\frac{P_{12}}{P_{12}+P_{21}}, \frac{-P_{21}}{P_{12}+P_{21}}\right)^{c}
\end{array}
$$

Note that $\vec{\pi}^{(i)} \vec{\nu}^{(j)}=\delta_{i j}$. In general, if $\vec{\pi}^{(i)}[P]=\lambda_{i} \vec{\pi}^{(i)}$ and $[P] \vec{\nu}^{(i)}=\lambda_{i} \vec{\nu}^{(i)}$ for $i=1, \ldots, \mathbf{M}$, then $\vec{\pi}^{(i)} \vec{\nu}^{(j)}=0$ if $\lambda_{i} \neq \lambda_{j}$. To see this,

$$
\lambda_{i} \vec{\pi}^{(i)} \vec{\nu}^{(j)}=\vec{\pi}^{(i)}[P] \vec{\nu}^{(j)}=\vec{\pi}^{(i)}\left(\lambda_{j} \vec{\nu}^{(j)}\right)=\lambda_{j} \vec{\pi}^{(i)} \vec{\nu}^{(j)}
$$

so if $\lambda_{i} \neq \lambda_{j}$, then $\vec{\pi}_{i} \vec{\nu}_{j}=0$. Normalization (of either $\vec{\pi}_{i}$ or $\vec{\nu}_{i}$) can make $\vec{\pi}_{i} \vec{\nu}_{i}=1$ for each i.

Note that the equations

$$
P_{11} \nu_{1}^{(i)}+P_{12} \nu_{2}^{(i)}=\lambda_{i} \nu_{1}^{(i)} ; \quad P_{21} \nu_{1}^{(i)}+P_{22} \nu_{2}^{(i)}=\lambda_{i} \nu_{2}^{(i)}
$$

can be rewritten in matrix form as

$$
[P][U]=[U][\Lambda] \quad \text { where }
$$

$$
[\Lambda]=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \quad \text { and } \quad[U]=\left[\begin{array}{cc}
\nu_{1}^{(1)} & \nu_{1}^{(2)} \\
\nu_{2}^{(1)} & \nu_{2}^{(2)}
\end{array}\right]
$$

Since $\vec{\pi}^{(i)} \vec{\nu}^{(j)}=\delta_{i j}$, we see that

$$
\left[\begin{array}{ll}
\pi_{1}^{(1)} & \pi_{2}^{(1)} \\
\pi_{1}^{(2)} & \pi_{2}^{(2)}
\end{array}\right]\left[\begin{array}{ll}
\nu_{1}^{(1)} & \nu_{1}^{(2)} \\
\nu_{2}^{(1)} & \nu_{2}^{(2)}
\end{array}\right]=[I]
$$

so $[U]$ is invertible and $\left[U^{-1}\right]$ has $\vec{\pi}^{(1)}$ and $\vec{\pi}^{(2)}$ as rows. Thus $[P]=[U][\Lambda]\left[U^{-1}\right]$ and

$$
\left[P^{2}\right]=[U][\wedge]\left[U^{-1}\right][U][\wedge]\left[U^{-1}\right]=[U]\left[\wedge^{2}\right]\left[U^{-1}\right]
$$

Similarly, for any $n \geq 2$,

$$
\begin{equation*}
\left[P^{n}\right]=[U]\left[\wedge^{n}\right]\left[U^{-1}\right] \tag{1}
\end{equation*}
$$

Eq. 3.29 in text has a typo and should be (1) above.
We can solve (1) in general (if all M eigenvalues are distinct) as easily as for $M=2$.

Break [$\wedge]^{n}$ into M terms,

$$
[\Lambda]^{n}=\left[\wedge_{1}^{n}\right]+\cdots+\left[\wedge_{\mathrm{M}}^{n}\right] \quad \text { where }
$$

[Λ_{i}^{n}] has λ_{i}^{n} in position (i, i) and has zeros elsewhere.
Then

$$
\left[P^{n}\right]=\sum_{i=1}^{\mathrm{M}} \lambda_{i}^{n} \vec{\nu}^{(i)} \vec{\pi}^{(i)}
$$

$$
\begin{aligned}
& {\left[P^{n}\right]=\sum_{i=1}^{\mathbf{M}} \lambda_{i}^{n} \vec{\nu}^{(i)} \vec{\pi}^{(i)}} \\
& \vec{\pi}^{(1)}=\left(\frac{P_{21}}{P_{12}+P_{21}}, \frac{P_{12}}{P_{12}+P_{21}}\right) \quad \vec{\nu}^{(1)}=(1,1)^{c} \\
& \vec{\pi}^{(2)}=(1,-1) \quad \vec{\nu}^{(2)}=\left(\frac{P_{1}}{P_{12}+P_{21}}, \frac{-P_{21}}{P_{12}+P_{21}}\right)^{c}
\end{aligned}
$$

The steady-state vector is $\vec{\pi}=\vec{\pi}^{(1)}$ and

$$
\begin{gathered}
\vec{\nu}^{(1)} \vec{\pi}=\left[\begin{array}{ll}
\pi_{1} & \pi_{2} \\
\pi_{1} & \pi_{2}
\end{array}\right] \quad \vec{\nu}^{(2)} \vec{\pi}^{(2)}=\left[\begin{array}{rr}
\pi_{2} & -\pi_{2} \\
-\pi_{1} & \pi_{1}
\end{array}\right] \\
{\left[P^{n}\right]=\left[\begin{array}{ll}
\pi_{1}+\pi_{2} \lambda_{2}^{n} & \pi_{2}-\pi_{2} \lambda_{2}^{n} \\
\pi_{1}-\pi_{1} \lambda_{2}^{n} & \pi_{2}+\pi_{1} \lambda_{2}^{n}
\end{array}\right]}
\end{gathered}
$$

We see that $\left[P^{n}\right]$ converges to $\vec{e} \vec{\pi}$, and the rate of convergence is λ_{2}. This solution is exact. It essentially extends to arbitrary finite M .

Distinct eigenvalues for $M>2$ states

Recall that, for an M state Markov chain, $\operatorname{det}[P-\lambda I]$ is a polynomial of degree M in λ. It thus has M roots (eigenvalues), which we assume here to be distinct.

Each eigenvalue λ_{i} has a right eigenvector $\vec{\nu}^{(i)}$ and a left eigenvector $\vec{\pi}^{(i)}$. Also $\vec{\pi}^{(i)} \vec{\nu}^{(j)}=0$ for each $i, j \neq i$.

By scaling $\vec{\nu}^{(i)}$ or $\vec{\pi}^{(i)}$, we can satisfy $\vec{\pi}^{(i)} \vec{\nu}^{(i)}=1$.
Let $[U]$ be the matrix with columns $\vec{\nu}^{(1)}$ to $\vec{\nu}^{(M)}$ and let $[V]$ have rows $\vec{\pi}^{(1)}$ to $\vec{\pi}^{(M)}$.

Then $[V][U]=I$, so $[V]=\left[U^{-1}\right]$. Thus the eigenvectors $\vec{\nu}^{(1)}$ to $\vec{\nu}^{(M)}$ are linearly independent and span M space. Same with $\vec{\pi}^{(1)}$ to $\vec{\pi}^{(M)}$.

Putting the right eigenvector equations together, $[P][U]=[U][\Lambda]$. Postmultiplying by $\left[U^{-1}\right]$, this becomes

$$
\begin{aligned}
{[P] } & =[U][\wedge]\left[U^{-1}\right] \\
{\left[P^{n}\right] } & =[U]\left[\wedge^{n}\right]\left[U^{-1}\right]
\end{aligned}
$$

Breaking [\wedge^{n}] into a sum of M terms as before,

$$
\left[P^{n}\right]=\sum_{i=1}^{\mathbf{M}} \lambda_{i}^{n} \vec{\nu}^{(i)} \vec{\pi}^{(i)}
$$

Since each row of $[P]$ sums to $1, \vec{e}$ is a right eigenvector of eigenvalue 1.

Thm: The left eigenvector $\vec{\pi}$ of eigenvalue 1 is a steady-state vector if it is normalized to $\vec{\pi} \vec{e}=1$.

Thm: The left eigenvector $\vec{\pi}$ of eigenvalue 1 is a steady-state vector if it is normalized to $\vec{\pi} \vec{e}=1$.

Pf: There must be a left eigenvector $\vec{\pi}$ for eigenvalue 1. For every $j, 1 \leq j \leq \mathbf{M}, \pi_{j}=\sum_{k} \pi_{k} P_{k j}$. Taking magnitudes,

$$
\begin{equation*}
\left|\pi_{j}\right| \leq \sum_{k}\left|\pi_{k}\right| P_{k j} \tag{2}
\end{equation*}
$$

with equality iff $\pi_{j}=\left|\pi_{j}\right| e^{i \phi}$ for all j and some ϕ. Summing over $j, \sum_{j}\left|\pi_{j}\right| \leq \sum_{k}\left|\pi_{k}\right|$. This is satisfied with equality, so (2) is satisfied with equality for each j.

Thus $\left(\left|\pi_{1}\right|,\left|\pi_{2}\right|, \ldots,\left|\pi_{M}\right|\right.$ is a nonnegative vector satisfying the steady-state vector equation. Normalizing to $\sum_{j}\left|\pi_{j}\right|=1$, we have a steady-state vector.

Thm: Every eigenvalue λ_{ℓ} satisfies $\left|\lambda_{\ell}\right| \leq 1$.
Pf: We have seen that if $\vec{\pi}^{(\ell)}$ is a left eigenvector of $[P]$ with eigenvalue λ_{ℓ}, then it is also a left eigenvector of $\left[P^{n}\right]$ with eigenvalue λ_{ℓ}^{n}. Thus

$$
\begin{aligned}
\lambda_{\ell}^{n} \pi_{j}^{(\ell)} & =\sum_{i} \pi_{i}^{(\ell)} P_{i j}^{n} \quad \text { for all } j . \\
\left|\lambda_{\ell}^{n}\right|\left|\pi_{j}^{(\ell)}\right| & \leq \sum_{i}\left|\pi_{i}^{(\ell)}\right| P_{i j}^{n} \quad \text { for all } j .
\end{aligned}
$$

Let β be the largest of $\left|\pi_{j}^{(\ell)}\right|$ over j. For that maximizing j,

$$
\left|\lambda_{\ell}^{n}\right| \beta \leq \sum_{i} \beta P_{i j}^{n} \leq \beta \mathbf{M}
$$

Thus $\left|\lambda_{\ell}^{n}\right| \leq \mathbf{M}$ for all n, so $\left|\lambda_{\ell}\right| \leq 1$.

These two theorems are valid for all finite-state Markov chains. For the case with M distinct eigenvalues, we have

$$
\left[P^{n}\right]=\sum_{i=1}^{\mathbf{M}} \lambda_{i}^{n} \vec{\nu}^{(i)} \vec{\pi}^{(i)}
$$

If the chain is an ergodic unichain, then one eigenvalue is 1 and the rest are strictly less than 1 in magnitude.

Thus the rate at which [P^{n}] approaches $\vec{e} \vec{\pi}$ is determined by the second largest eigenvalue.

If $[P]$ is a periodic unichain with period d, then there are d eigenvalues equally spaced around the unit circle and $\left[P^{n}\right.$] does not converge.

M states and M independent eigenvectors

Next assume that one or more eigenvalues have multiplicity greater than 1, but that if an eigenvalue has multiplicity k, then it has k linearly independent eigenvectors.

We can choose the left eigenvectors of a given eigenvalue to be orthonormal to the right eigenvectors of that eigenvalue.

After doing this and defining [U] as the matrix with columns $\vec{\nu}^{(1)}, \ldots, \vec{\nu}^{(\mathbf{M})}$, we see $[U]$ is invertible and that $\left[U^{-1}\right.$) is the matrix with rows $\vec{\pi}^{(1)}, \ldots, \vec{\pi}^{(M)}$. We then again have

$$
\left[P^{n}\right]=\sum_{i=1}^{\mathbf{M}} \lambda_{i}^{n} \vec{\nu}^{(i)} \vec{\pi}^{(i)}
$$

Example: Consider a Markov chain consisting of ℓ ergodic sets of states.

Then each ergodic set will have an eigenvalue equal to 1 with a right eigenvector equal to 1 on the states of that set and 0 elsewhere.

There will also be a 'steady-state' vector, nonzero only on that set of states.

Then [P^{n}] will converge to a block diagonal matrix where for each ergodic set, the rows within that set are the same.

The Jordan form

Unfortunately, it is possible that an eigenvalue of algebraic multiplicity $k \geq 2$ has fewer than k linearly independent eigenvectors.

The decomposition $[P]=[U][\wedge]\left[U^{-1}\right]$ can be replaced in this case by a Jordan form, $[P]=[U][J]\left[U^{-1}\right]$ where [J] has the form

$$
[J]=\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \lambda_{2} & 1 & 0 \\
0 & 0 & 0 & \lambda_{2} & 0 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right]
$$

The eigenvalues are on the main diagonal and ones are on the next diagonal up where needed for deficient eigenvectors.

Example:

$$
[P]=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1
\end{array}\right]
$$

The eigenvalues are 1 and $1 / 2$, with algebraic multiplicity 2 for $\lambda=1 / 2$.

There is only one eigenvector (subject to a scaling constant) for the eigenvalue $1 / 2$. [P^{n}] approaches steady-state as $n(1 / 2)^{n}$.

Fortunately, if $[P]$ is stochastic, the eigenvalue 1 always has as many linearly independent eigenvectors as its algebraic multiplicity.

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

