Lecture 19

Broadcast routing

Eytan Modiano

Broadcast Routing

- Route a packet from a source to all nodes in the network
- Possible solutions:
- Flooding: Each node sends packet on all outgoing links

Discard packets received a second time

- Spanning Tree Routing: Send packet along a tree that includes all of the nodes in the network

Graphs

- A graph $\mathbf{G}=(\mathrm{N}, \mathrm{A})$ is a finite nonempty set of nodes and a set of node pairs A called arcs (or links or edges)

$$
\begin{aligned}
N & =\{1,2,3\} \\
A & =\{(1,2)\}
\end{aligned}
$$

Walks and paths

- A walk is a sequence of nodes ($\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nk}$) in which each adjacent node pair is an arc.
- A path is a walk with no repeated nodes.

Walk (1,2,3,4,2)

Path (1,2,3,4)

Cycles

- A cycle is a walk ($\mathrm{n} 1, \mathrm{n} 2, \ldots, \mathrm{nk}$) with $\mathrm{n} 1=n k, k>3$, and with no repeated nodes except n1 = nk

Connected graph

- A graph is connected if a path exists between each pair of nodes.

Connected

Unconnected

- An unconnected graph can be separated into two or more connected components.

Acyclic graphs and trees

- An acyclic graph is a graph with no cycles.
- A tree is an acyclic connected graph.

Acyclic connected

unconnected
not tree

Cyclic, not tree

- The number of arcs in a tree is always one less than the number of nodes
- Proof: start with arbitrary node and each time you add an arc you add a node => N nodes and N-1 links. If you add an arc without adding a node, the arc must go to a node already in the tree and hence form a cycle

Subgraphs

- $\quad \mathbf{G}^{\prime}=\left(N^{\prime}, A^{\prime}\right)$ is a subgraph of $G=(N, A)$ if
- 1) G^{\prime} is a graph
- 2) N^{\prime} is a subset of N
- 3) A^{\prime} is a subset of A
- One obtains a subgraph by deleting nodes and arcs from a graph
- Note: arcs adjacent to a deleted node must also be deleted

- Graph G

Subgraph G' of G

Spanning trees

- $\quad T=\left(N^{\prime}, A^{\prime}\right)$ is a spanning tree of $G=(N, A)$ if
- $\quad \mathbf{T}$ is a subgraph of \mathbf{G} with $\mathbf{N}^{\prime}=\mathbf{N}$ and T is a tree

Graph G

Spanning tree of G

Spanning trees

- Spanning trees are useful for disseminating and collecting control information in networks; they are sometimes useful for routing
- To disseminate data from Node n :
- Node n broadcasts data on all adjacent tree arcs
- Other nodes relay data on other adjacent tree arcs
- To collect data at node n :
- All leaves of tree (other than n) send data
- Other nodes (other than n) wait to receive data on all but one adjacent arc, and then send received plus local data on remaining arc

General construction of a spanning tree

- Algorithm to construct a spanning tree for a connected graph $\mathbf{G}=(\mathbf{N}, \mathbf{A})$:

1) Select any node n in $N ; N^{\prime}=\{n\} ; A^{\prime}=\{ \}$
2) If $N^{\prime}=N$, then stop $\left(T=\left(N^{\prime}, A^{\prime}\right)\right.$ is a spanning tree)
3) Choose (i,j) $\in \mathbf{A}, \mathbf{i} \in \mathbf{N}^{\prime}, \mathbf{j} \notin \mathbf{N}^{\prime}$
$N^{\prime}:=N^{\prime} \cup\{j\} ; A^{\prime}:=A^{\prime} \cup\{(i, j)\} ;$ go to step 2

- Connectedness of G assures that an arc can be chosen in step 3 as long as $\mathbf{N}^{\prime} \neq \mathbf{N}$
- Is spanning tree unique?

Spanning tree algorithm

- The algorithm never forms a cycle, since each new arc goes to a new node.
- $\quad \mathbf{T}=\left(N^{\prime}, A^{\prime}\right)$ is a tree at each step of the algorithm since T is always connected, and each time we add an arc we also add a node
- Theorem: If G is a connected graph of \mathbf{n} nodes, then

1) G contains at least $n-1$ arcs
2) G contains a spanning tree
3) if \mathbf{G} contains exactly $\mathrm{n}-1$ arcs, \mathbf{G} is a spanning tree

Distributed algorithms to find spanning trees

1) A fixed node sends a "start" message on each adjacent arc of the graph
2) Each other node marks the first arc on which a start message was received as a spanning tree arc and then sends a "start" message on each other arc

- This is a distributed implementation of the general spanning tree algorithm
- It has several problems shared by many such algorithms:
a) who chooses the starting node?
b) When does the algorithm terminate?
c) The resulting tree is somewhat random

Min weight spanning tree

- Given a graph with weights assigned to each arc, find a spanning tree of minimum total weight (MST)
- Define a "fragment" to be a subtree of a MST
- Theorem:
- Given a fragment F of an MST, Let $a(i, j)$ be a minimum weight outgoing arc from F, where j is not in F.
- Then, F extended by arc $a(i, j) \&$ node j is a fragment.
- Proof:
- Let M be the MST that does not include a(i,j).
- Since $a(i, j)$ is not part of M, then adding $a(i, j)$ to M must cause a cycle. There must be some link in the cycle $b \neq a$ which is outgoing from F.
- Deleting b and adding a creates a new spanning tree. Since weight of b cannot be less then weight of a , M' must be a MST.

If weight of $a=$ weight of b, then both are MST's otherwise M could not have been an MST

MST algorithms

- Generic MST algorithm steps:
- Given a collection of subtrees of an MST (called fragments) add a minimum weight outgoing edge to some fragment
- Prim-Dijkstra: Start with an arbitrary single node as a fragment
- Add minimum weight outgoing edge
- Kruskal: Start with each node as a fragment;
- Add the minimum weight outgoing edge, minimized over all fragments

Prim-Dijkstra Algorithm

Kruskal Algorithm

Fragment

- Suppose the arcs of weight 1 and 3 are a fragment
- Consider any spanning tree using those arcs and the arc of weight 4, say, which is an outgoing arc from the fragment.
- Suppose that spanning tree does not use the arc of weight 2.
- Removing the arc of weight 4 and adding the arc of weight 2 yields another tree of smaller weight.
- Thus an outgoing arc of min weight from fragment must be in MST.

