Lectures 10 \& 11

Reservations Systems M/G/1 queues with Priority

Eytan Modiano
MIT

RESERVATION SYSTEMS

- Single channel shared by multiple users
- Only one user can use the channel at a time
- Need to coordinate transmissions between users
- Polling systems
- Polling station polls the users in order to see if they have something to send

- A scheduler can be used to receive

R1	D1	R2	D2	R3	D3	R1	D1

- Reservation interval (R) used for polling or making reservations
- Data interval (D) used for the actual data transmission

Reservations and polling systems

- Gated system - users can transmit only those packets that arrived prior to start of reservation interval
- E.g., explicit reservations
- Partially gated system - Can transmit all packets that arrived before the start of the data interval
- Exhaustive system - Can transmit all packets that arrive prior to the end of the data interval
- E.g., token ring networks
- Limited service system - only one (K) packets can be transmitted in a data interval

Single user exhaustive systems

- Let V_{j} be the duration of the $\mathrm{j}^{\text {th }}$ reservation interval
- Assume reservation intervals are iid
- Consider the $\mathrm{i}^{\text {th }}$ data packet:

$$
\begin{aligned}
E\left[W_{i}\right]= & R_{i}+E\left[N_{i}\right] / \mu \\
& R_{i}=\text { residual time for current packet or reservation interval } \\
& N_{i}=\text { Number of packets in queue }
\end{aligned}
$$

- Identical to M/G/1 with vacations

$$
W=\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}+\frac{E\left[V^{2}\right]}{2 E[V]}
$$

$$
\text { When } \mathrm{V}=\mathrm{A}(\text { constant }) \Rightarrow W=\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}+\frac{A}{2}
$$

Single user gated system (e.g.,reservations)

i-1

$$
W_{i}=R_{i}+\underset{j=i-N_{i}}{X_{j}}+V_{i}
$$

$$
E\left[W_{i}\right]=E\left[R_{i}\right]+E\left[N_{i}\right] E[X]+E[V]
$$

$$
\begin{aligned}
W & =R+N_{Q} E[X]+E[V] \quad(N Q=\lambda W) \\
W & =(R+E[V]) /(1-\rho)
\end{aligned}
$$

SINGLE USER RESERVATION SYSTEM

- The residual service time is the same as in the vacation case,

$$
\mathrm{R}=\lambda \frac{\mathrm{E}\left[\mathrm{X}^{2}\right]}{2}+\frac{(1-\rho) \mathrm{E}\left[\mathrm{~V}^{2}\right]}{2 \mathrm{E}[\mathrm{~V}]}
$$

- Hence,

$$
W=\lambda \frac{E\left[X^{2}\right]}{2(1-\rho)}+\frac{E\left[V^{2}\right]}{2 E[V]}+\frac{E[V]}{1-\rho}
$$

- If all reservation intervals are of constant duration A,

$$
W=\lambda \frac{E\left[X^{2}\right]}{2(1-\rho)}+\frac{A}{1-\rho}+\frac{A}{2}
$$

Multi-user exhaustive system

- Consider m incoming streams of packets, each of rate λ / m
- Service times $\left\{X_{n}\right\}$ are IID and independent of arrivals with mean $1 / \mu$, second moment $E\left[X^{2}\right]$.
- Server serves all packets from stream 0 , then all from stream $1, \ldots$, then all from $\mathrm{m}-1$, then all from 0 , etc.
- There is a reservation interval of fixed duration $\mathbf{V}_{\mathrm{i}}=\mathbf{V}$ (for all i)

Multi-user exhaustive system

- Consider arbitrary packet \mathbf{i}
- Let $Y_{i}=$ the duration of whole reservation intervals during which packet i must wait ($\mathrm{E}\left[\mathrm{Y}_{\mathrm{i}}\right]=\mathrm{Y}$)

$$
\mathbf{W}=\mathbf{R}+\rho \mathbf{W}+\mathbf{Y}
$$

- Packet i may arrive during the reservation or data interval of any of the m streams with equal probability ($1 / \mathrm{m}$)
- If it arrives during its own interval $Y_{i}=0$, etc..., hence,

$$
\begin{aligned}
& Y_{i}=\left\{\begin{array}{lll}
i V & w \cdot p . \quad 1 / m \quad 0 \leq i<m
\end{array}\right. \\
& Y=E\left[Y_{i}\right]=\frac{V}{m} \sum_{i=0}^{m-1} i=\frac{V(m-1)}{2} \\
& W=\frac{R+Y}{(1-\rho)}, \quad R=\frac{(1-\rho) V^{2}}{2 V}+\frac{\lambda E\left[X^{2}\right]}{2}
\end{aligned}
$$

Multi-user exhaustive system

$$
\begin{aligned}
W & =\frac{(1-\rho) V+\lambda E\left[X^{2}\right]+V(m-1)}{2(1-\rho)}, \\
& =\frac{V}{2}+\frac{V(m-1)}{2(1-\rho)}+\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}=\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}+\frac{V(m-\rho)}{2(1-\rho)}
\end{aligned}
$$

- In text, V = A/m and hence,

$$
W=\frac{A}{2 m}+\frac{A(m-1)}{2 m(1-\rho)}+\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}=\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}+\frac{A(1-\rho / m)}{2(1-\rho)}
$$

Gated System

- When a packet arrives during its own reservation interval, it must wait m full reservation intervals

With $\mathrm{V}=\mathrm{A} / \mathrm{m}$,

$$
\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}+\frac{A}{2 m}+\frac{A(1+1 / m)}{2(1-\rho)}=\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}+\frac{A}{2}\left(\frac{1+(2-\rho) / m}{(1-\rho)}\right)
$$

$$
\begin{aligned}
& Y_{i}=\{i V \quad \text { w.p. } \quad 1 / m \quad 1 \leq i \leq m \\
& Y=E\left[Y_{i}\right]=\frac{V}{m} \sum_{i=1}^{m} i=\frac{V(m+1)}{2} \\
& W=\frac{V}{2}+\frac{V(m+1)}{2(1-\rho)}+\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}
\end{aligned}
$$

M/G/1 Priority Queueing

- Priority classes $1, \ldots, n$ (class 1 highest and \mathbf{n} lowest)

$$
\begin{aligned}
& \lambda_{k}=\text { arrivalrate for class } k \\
& \mu_{k}=\text { service rate for class } k \\
& E\left[X_{k}^{2}\right]=\sec \text { ond moment of servicetime(class } k \text {) }
\end{aligned}
$$

- Non-preemptive system: Customer receiving service is allowed to complete service without interruption

$$
W_{k}=\frac{\sum_{i=1}^{i=n} \lambda_{i} E\left[X_{i}^{2}\right]}{2\left(1-\rho_{1}-\ldots-\rho_{k-1}\right)\left(1-\rho_{1}-\ldots-\rho_{k}\right)}, \quad \rho_{i}=\frac{\lambda_{i}}{\mu_{i}}
$$

- Notice that the waiting time of high priority traffic is affected by lower priority traffic

Preemptive-resume systems

- When a higher priority customer arrives, lower priority customer is interrupted
- Service is resumed when no higher priority customers remain
- Notice that the delay of high priority customers is no longer affected by that of lower priority customers
- Preemption is not always practical and usually involves some overhead
- Consider a class \mathbf{k} arrival and let,
- $\quad W_{k}=$ waiting time for customers of class k or higher priority classes (1..K-1) already in the system
$R_{k}=$ residual time for class k or higher customers
Notice that lower priority customers in service don't affect W_{k} because they are preempted
- $\quad \mathbf{W}_{1}=$ Waiting time for higher priority customers that arrive while priority k customer is already in the system
- $\quad T_{K}=$ Average system time for priority K customer

$$
T_{k}=W_{k}+W_{1}+1 / \mu
$$

Preemptive-resume, continued...

$$
\begin{aligned}
& W_{k \square}=\frac{R_{k}}{1-\rho_{1}-\ldots-\rho_{k}}, R_{k \square}=\frac{\sum_{i=1}^{k ■} \lambda_{i} E\left[X_{i}^{2}\right]}{2} \\
& W_{I \square}=\sum_{i=1}^{k \boxminus 1}\left(\lambda_{i} / \mu_{i}\right) T_{k \square}=\sum_{i=1}^{k \boxminus 1}\left(\rho_{i}\right) T_{k \square} \\
& T_{k \downharpoonright}=\frac{1}{\mu_{k \square}}+\frac{R_{k \square}}{1-\rho_{1}-\ldots-\rho_{k \square}}+T_{k} \sum_{i \equiv 1}^{k \in 1} \rho_{i \square} \\
& T_{k \downharpoonright}=\left(\frac{1}{\mu_{k \square}}\right) \frac{\left(1-\rho_{1}-\ldots-\rho_{k}\right)+R_{k \square}}{\left(1-\rho_{1}-\ldots-\rho_{k \boxminus 1}\right)\left(1-\rho_{1}-\ldots-\rho_{k}\right)}
\end{aligned}
$$

- Notice independence of lower priority traffic

Stability of Queueing Systems

- Possible Definitions
- Average Delay is bounded

$$
E(\text { delay }) \text { < infinity) }
$$

- Delay is finite with probability 1

$$
\mathrm{P}(\text { delay }<\text { infinity })=1
$$

- Existence of a stationary occupancy distribution

Occupancy does not drift to infinity

E(delay) < Infinity

- Example: M/M/1 queue

$$
T=\frac{1}{\mu-\lambda}<\infty \forall \lambda<\mu \Rightarrow \rho<1
$$

- Example: M/G/1 queue

$$
T=\frac{1}{\mu}+\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}<\infty \text { if }(\rho<1) \text { and }\left(E\left[X^{2}\right]<\infty\right)
$$

$P($ Delay $<$ Infinity $)=1$

- Slightly weaker definition than E[delay] < infinity
- $P($ delay $<$ infinity $)=1$ even if $E($ delay $)=$ infinity
- Example:

$$
\begin{aligned}
& f_{D}(d)=\frac{2}{\pi\left(1+d^{2}\right)}, d>0 \\
& E[\text { Delay }]=\int_{0}^{\infty} \frac{2 d}{\pi\left(1+d^{2}\right)}=\left.\frac{\log \left[1+d^{2}\right]}{\pi}\right|_{0} ^{\infty} \Rightarrow \infty \\
& P[\text { Delay }<x]=\int_{0}^{x} \frac{2}{\pi\left(1+d^{2}\right)}=\frac{2 \arctan (x)}{\pi} \underset{x \rightarrow \infty}{\rightarrow} 1
\end{aligned}
$$

- In general it can be shown that for any G/G/1 queue
- Arrival and service time distributions may even be correlated!

If $\lambda<\mu, \mathbf{P}$ (delay $<$ Infinity $)=\mathbf{1}$ even if \mathbf{E} (delay) not finite

Existence of a stationary occupancy distribution

- Irreducible and Aperiodic Markov chain
- $\quad \mathrm{Pj}>0$ for all states $\mathrm{j}=>$ all states are visited infinitely often
- Drift:

$$
D_{i}=E\left[X_{n+1}-X_{n} \mid X_{n}=i\right]=\sum_{k=i}^{\infty} k P_{(i, i+k)}
$$

- When in state I,

$$
\begin{aligned}
& D_{i}>0=>\text { state tends to increase } \\
& D_{i}<0=>\text { state tends to decrease }
\end{aligned}
$$

- Intuitively, we don't want the state to drift to infinity, hence for large enough states the drift better get negative!
- Lemma: If $D_{i}<i n f i n i t y ~ f o r ~ a l l ~ i ~ a n d ~ f o r ~ s o m e ~ \delta>0 ~ a n d ~ i>~>~, ~$

$$
\mathrm{D}_{\mathrm{i}}<-\delta \text { for all } \mathrm{i}>\mathrm{i}, \text {, then the Markov chain has a stationary distribution }
$$

Irriducible: all states communicate (I.e., positive probability of getting from every state to every other state) Periodic state : self transitions are possible only after a number of transitions (n) that is a multiple of some constant d (I.e., $\mathrm{n}=3,6,9, \ldots$). Aperiodic $=>$ no state is periodic

Examples

- M/M/1

$$
\begin{aligned}
& D_{i}=E\left[X_{n+1}-X_{n} \mid X_{n}=i\right]=1(\lambda \delta)-1(\mu \delta)=(\lambda-\mu) \delta \\
& D_{i}<0 \Rightarrow \lambda<\mu
\end{aligned}
$$

$$
D_{i}=E\left[X_{n+1}-X_{n} \mid X_{n}=i\right]=1(\lambda \delta)-1(i \mu \delta)
$$

- M/M/Inf

$$
D_{i}<0 \Rightarrow \lambda<i \mu
$$

For any $\lambda<\infty$ and $1 / \mu<\infty \exists i^{\prime}$ s.t., $D_{i}<0 \forall i>i^{i}$

