
Lectures 3 & 4

6.263/16.37

The Data Link Layer: ARQ Protocols

Eytan Modiano
MIT, LIDS

Eytan Modiano
1

Automatic Repeat ReQuest (ARQ)

•	 When the receiver detects errors in a packet, how does it let the
transmitter know to re-send the corresponding packet?

•	 Systems which automatically request the retransmission of missing
packets or packets with errors are called ARQ systems.

• Three common schemes
– Stop & Wait
– Go Back N
– Selective Repeat

Eytan Modiano
2

Pure Stop and Wait Protocol

Transmitter departure times at A Time

ACK

----->

NAK

packet 0 CRC packet 1 CRC packet 1 CRC

arrival times at receiver

Packet 0
Accepted

• Problem: Lost Packets
– Sender will wait forever for an acknowledgement

• Packet may be lost due to framing errors

• Solution: Use time-out (TO)
– Sender retransmits the packet after a timeout

Packet 1
Accepted

Eytan Modiano
3

The Use Of Timeouts For Lost Packets Requires

Sequence Numbers

<---- timeout ----->packet 0 CRC packet 0 CRC

packet 0 or 1?
packet 0
accepted

•	 Problem: Unless packets are numbered the receiver cannot tell which
packet it received

• Solution: Use packet numbers (sequence numbers)

Eytan Modiano
4

Request Numbers Are Required On ACKs To

Distinguish Packet ACKed

ACKACK

0 ut 0 ? timeopacket 0 packet 0 packet 1 1

Packet 0
accepted

• REQUEST NUMBERS:
–	 Instead of sending "ack" or "nak", the receiver sends the number of the

packet currently awaited.
– Sequence numbers and request numbers can be sent modulo 2.

This works correctly assuming that
1) Frames travel in order (FCFS) on links
2) The CRC never fails to detect errors
3) The system is correctly initialized.

Eytan Modiano
5

Stop and Wait Protocol

Algorithm at sender (node A)

(with initial condition SN=0)

1) 	 Accept packet from higher layer when available;
assign number SN to it

2) Transmit packet SN in frame with sequence # SN

3) Wait for an error free frame from B

i.	 if received and it contains RN>SN in the
request # field, set SN to RN and go to 1

ii. if not received within given time, go to 2

Eytan Modiano
6

Stop and Wait

Algorithm at receiver (node B)

(with initial condition RN=0)

1) 	Whenever an error-free frame is received from A with a sequence #
equal to RN, release received packet to higher layer and increment RN.

2) 	At arbitrary times, but within bounded delay after receiving any error
free frame from A, transmit a frame to A containing RN in the request #
field.

Eytan Modiano
7

Correctness of stop & wait with integer SN, RN

• Assume, for A to (from) B transmission, that

– All errors are detected as errors
– Initially no frames are on link, SN=0, RN=0
– Frames may be arbitrarily delayed or lost
–	 Each frame is correctly received with at least

some probability q>0.

• Split proof of correctness into two parts:

–	 SAFETY: show that no packet is ever released out of order or more than
once

– LIVENESS: show that every packet is eventually released

Eytan Modiano
8

Safety

•	 No frames on link initially, packet 0 is first packet accepted at A, it is the
only packet assigned SN=0, and must be the packet released by B if B
ever releases a packet

•	 Subsequently (using induction) if B has released packets up to and
including n-1, then RN is updated to n when n-1 is released, and only n
can be released next

Eytan Modiano
9

LIVENESS

i i i

i

SN

RN

Node A

Node B

x

i+1

x

i+1

t

t

t1

2

3

i

Packets out i

t1 = time at which A first starts to transmit packet i

t2 = time at which B correctly receives & releases i, and
increases RN to i+1

t3 = time at which SN is increased to i+1

Will prove that t1 < t2 < t3 < ∞. => Liveness
Eytan Modiano

10

Liveness Argument

• Let SN(t), RN(t) be values of SN and RN at time t

From the algorithm,

(1) SN(t) and RN(t) are increasing in t and SN(t) ≤ RN(t) for all t
(2) From safety (since i has not been sent before t1) RN(t1) ≤ i and
SN(t1) = i

• From (1) and (2), RN(t1) = SN(t1) = i
• RN is incremented at t2 and SN at t3, so t2 < t3

•	 A transmits i repeatedly up to t3, and thus to t2 when it is correctly
received. Since q>0, t2 is finite

•	 B transmits RN=i+1 repeatedly until correctly received at t3, and q>0
implies that t3 is finite.

Eytan Modiano
11

Correctness of Stop & Wait with

binary (finite) SN, RN

• Assume that frames travel on link in order

Note that with integer SN, RN, either
SN=RN (from t1 to t2) or (3)
SN=RN-1 (from t2 to t3) (4)

Since frames travel in order, the sequence numbers arriving at B and
the request numbers arriving at A are increasing, so a single bit can
resolve the ambiguity between (3) and (4)

–	 RN = 0 and SN = 1 or RN =1 and SN = 0
=> received packet is an old packet

–	 RN = 0 and SN = 0 or RN = 1 and SN = 1
=> received packet is new

Eytan Modiano
12

Efficiency of stop and wait

Let S = total time between the transmission of a packet and reception of its
ACK

DTP = transmission time of the packet

Efficiency (no errors) = DTP/S

DP = prop delay

packet

ACK

S

DTP DP
DTA

DP

S = DTP + 2DP + DTA
A

B

DTA = ACK trans. Time
DTP = packet trans. time

Eytan Modiano
13

E = DTP/(DTP + 2DP + DTA)

Stop and wait in the presence of errors

Let P = the probability of an error in the transmission of a packet or in its
acknowledgment

S = DTP + 2DP + DTA

TO = the timeout interval
X = the amount of time that it takes to transmit a packet and receive its

ACK. This time accounts for retransmissions due to errors

E[X] = S + TO*P/(1-P), Efficiency = DTP/E[X]

Where,

TO = DTP in a full duplex system
TO = S in a half duplex system

Eytan Modiano
14

Go Back N ARQ

(Sliding Window)

•	 Stop and Wait is inefficient when propagation delay is larger than the
packet transmission time

– Can only send one packet per round-trip time
•	 Go Back N allows the transmission of new packets before earlier ones

are acknowledged

•	 Go back N uses a window mechanism where the sender can send
packets that are within a “window” (range) of packets

– The window advances as acknowledgements for earlier packets are received

PKT-0 PKT-1 PKT-2 PKT-3 PKT-9PKT-8PKT-7PKT-6PKT-5PKT-4

ACK-0 ACK-1 ACK-2 ACK-3 ACK-4 ACK-5 ACK-6 ACK-7 ACK-8

WINDOW

WINDOW

WINDOW

WINDOW

Eytan Modiano
15

Features of Go Back N

• Window size = N
– Sender cannot send packet i+N until it has received the ACK for packet i

• Receiver operates just like in Stop and Wait
– Receive packets in order
– Receiver cannot accept packet out of sequence
– Send RN = i + 1 => ACK for all packets up to and including i

• Use of piggybacking
– When traffic is bi-directional RN’s are piggybacked on packets going in the

other direction
Each packet contains a SN field indicating that packet’s sequence number and a
RN field acknowledging packets in the other direction

<--Frame Header --------->

SN RN Packet CRC

Eytan Modiano
16

Go Back N ARQ

•	 The transmitter has a "window" of N packets that can be sent without
acknowledgements

•	 This window ranges from the last value of RN obtained from the
receiver (denoted SNmin) to SNmin+N-1

•	 When the transmitter reaches the end of its window, or times out, it
goes back and retransmits packet SNmin

Let SNmin be the smallest number packet not yet ACKed

Let SNmax be the number of the next packet to be accepted from the higher
layer (I.e., the next new packet to be transmitted)

Eytan Modiano
17

Go Back N

Sender Rules

• SNmin = 0; SNmax = 0
• Repeat

–	 If SNmax < SNmin + N (entire window not yet sent)
Send packet SNmax ;
SNmax = SNmax + 1;

–	 If packet arrives from receiver with RN > SNmin
SNmin = RN;

– If SNmin < SNmax (there are still some unacknowledged packets) and sender
cannot send any new packets

Choose some packet between SNmin and SNmax and re-send it

•	 The last rule says that when you cannot send any new packets you
should re-send an old (not yet ACKed) packet

–	 There may be two reasons for not being able to send a new packet
Nothing new from higher layer
Window expired (SNmax = SNmin + N)

–	 No set rule on which packet to re-send
Least recently sent

Eytan Modiano
18

Receiver Rules

• RN = 0;
• Repeat

–	 When a good packet arrives, if SN = RN
Accept packet
Increment RN = RN +1

• At regular intervals send an ACK packet with RN
– Most DLCs send an ACK whenever they receive a packet from the other

direction
Delayed ACK for piggybacking

• Receiver reject all packets with SN not equal RN
–	 However, those packets may still contain useful RN numbers (see

homework assignment)

Eytan Modiano
19

Example of Go Back 7 ARQ

0 3 4 5

t

1 6SN

RN 0 1 2 3 5

Window (0,6) (1,7) (5,11)(2,8) (3,9)

Node A

Node B

2

0 5

Packets 0 1 2 3 4 5

delivered

•	 Note that packet RN-1 must be accepted at B before a frame
containing request RN can start transmission at B

Eytan Modiano

20

RETRANSMISSION BECAUSE OF ERRORS FOR GO

BACK 4 ARQ

0 3 4

t

1 SN

RN 0 1 1 1 1 2

x

3 4

3

Window

Node A

Node B

Packets

(0,3) (1,4) (2,5)
2 1 2

1

0 1 2 3delivered

•	 Note that the timeout value here is take to be the time to send a full
window of packets

• Note that entire window has to be retransmitted after an error

Eytan Modiano
21

RETRANSMISSION DUE TO FEEDBACK ERRORS

FOR GO BACK 4 ARQ

50 3 4

t

1 SN

RN 0 4 5

x

4 5

6

x

5

Window (0,3) (2,5) (4,7) (5,8)

Node A

Node B

2 3

2 2

1

Packets 0 1 2 3 4
delivered

•	 When an error occurs in the reverse direction the ACK may still arrive in
time. This is the case here where the packet from B to A with RN=2
arrives in time to prevent retransmission of packet 0

•	 Packet 2 is retransmitted because RN = 4 did not arrive in time,
however it did arrive in time to prevent retransmission of packet 3

– Was retransmission of packet 4 and 5 really necessary?

Strictly no because the window allows transmission of packets 6 and 7 before
further retransmissions. However, this is implementation dependent Eytan Modiano

22

EFFECT OF LONG FRAMES

0 2 4

t

1SN

RN 0 1 3 4

3 5

3

1 4

5

Window

Node A

Packets

(0,3) (1,4) (3,6) (4,7)

Node B

3

0 1 2 4
delivered

• Long frames in feedback direction slow down the ACKs
– This causes a transmitter with short frames to wait or go back

•	 Notice again that the retransmission of packets 3 and 4 was not
strictly required because the sender could have sent new packets
within the window

– Again, this is implementation dependent
Eytan Modiano

23

Efficiency of Go Back N

A

B

packet

ACK

S

DTP DP
DTA

DP

S = DTP + 2DP + DTA
packet packet packet

N*DTP

•	 We want to choose N large enough to allow continuous transmission
while waiting for an ACK for the first packet of the window,

N > S/ DTP

•	 Without errors the efficiency of Go Back N is,

E = min{1, N*DTP/S} Eytan Modiano
24

Efficiency of Go Back N with transmission errors

Approximate analysis

Assume: N =

D
S

TP

 TO = N*DTP

•	 When an error occurs the entire window of N packets must be
retransmitted

Let X = the number of packets sent per successful transmission

E[X] = 1*(1-P) + (X+N)*P

= 1 + N*P/(1-P)

Efficiency = 1/E[X]

Eytan Modiano
25

Go Back N Requirements

•	 Go Back N is guaranteed to work correctly, independent of the detailed
choice of which packets to repeat, if

1) System is correctly initialized
2) No failures in detecting errors
3) Packets travel in FCFS order
4) Positive probability of correct reception
5) Transmitter occasionally resends Snmin (e.g., upon timeout)
6) Receiver occasionally sends RN

Eytan Modiano
26

Notes on Go Back N

• Requires no buffering of packets at the receiver
• Sender must buffer up to N packets while waiting for their ACK
• Sender must re-send entire window in the event of an error
• Packets can be numbered modulo M where M > N

– Because at most N packets can be sent simultaneously
• Receiver can only accept packets in order

– Receiver must deliver packets in order to higher layer
– Cannot accept packet i+1 before packet i
– This removes the need for buffering
– This introduces the need to re-send the entire window upon error

•	 The major problem with Go Back N is this need to re-send the entire
window when an error occurs. This is due to the fact that the receiver
can only accept packets in order

Eytan Modiano
27

Selective Repeat Protocol (SRP)

•	 Selective Repeat attempts to retransmit only those packets that are
actually lost (due to errors)

– Receiver must be able to accept packets out of order
–	 Since receiver must release packets to higher layer in order, the receiver must

be able to buffer some packets

• Retransmission requests
– Implicit

The receiver acknowledges every good packet, packets that are not ACKed before a
time-out are assumed lost or in error
Notice that this approach must be used to be sure that every packet is eventually
received

–	 Explicit
An explicit NAK (selective reject) can request retransmission of just one packet
This approach can expedite the retransmission but is not strictly needed

– One or both approaches are used in practice

Eytan Modiano
28

SRP Rules

• Window protocol just like GO Back N
– Window size W

• Packets are numbered Mod M where M >= 2W
•	 Sender can transmit new packets as long as their number is with W of

all un-ACKed packets
• Sender retransmit un-ACKed packets after a timeout

– Or upon a NAK if NAK is employed
• Receiver ACKs all correct packets
•	 Receiver stores correct packets until they can be delivered in order to

the higher layer

Eytan Modiano
29

Need for buffering

• Sender must buffer all packets until they are ACKed
– Up to W un-ACKed packet are possible

• Receiver must buffer packets until they can be delivered in order
– I.e., until all lower numbered packets have been received
– Needed for orderly delivery of packets to the higher layer
–	 Up to W packets may have to be buffered (in the event that the first packet

of a window is lost)
• Implication of buffer size = W

–	 Number of un-ACKed packets at sender =< W
Buffer limit at sender

–	 Number of un-ACKed packets at sender cannot differ by more than W
Buffer limit at the receiver (need to deliver packets in order)

– Packets must be numbered modulo M >= 2W (using log2(M) bits)

Eytan Modiano
30

EFFICIENCY

• For ideal SRP, only packets containing errors will be retransmitted
–	 Ideal is not realistic because sometimes packets may have to be

retransmitted because their window expired. However, if the window size is
set to be much larger than the timeout value then this is unlikely

• With ideal SRP, efficiency = 1 - P
– P = probability of a packet error

• Notice the difference with Go Back N where

efficiency (Go Back N) = 1/(1 + N*P/(1-P))

•	 When the window size is small performance is about the same,
however with a large window SRP is much better

–	 As transmission rates increase we need larger windows and hence the
increased use of SRP

Eytan Modiano
31

Why are packets numbered Modulo 2W?

•	 Lets consider the range of packets that may follow packet i at the
receiver

i - W +1 i i - W +1

x
i i - W +1

Packet i may be followed by the first packet of the window (i -W+1) if it
requires retransmission

i i+1 i+2 i+W

xxx x
i i - W

Packet i may be followed by the last packet of the window (i+W) if all
Of the ACKs between i and i +W are lost

• Receiver must differentiate between packets i -W+1 ... i +W
– These 2W packets can be differentiated using Mod 2W numbering

Eytan Modiano
32

STANDARD DLC's

• HDLC, LAPB (X.25), and SDLC are almost the same
– HDLC/ SDLC developed by IBM for IBM SNA networks
– LAPB developed for X.25 networks

• They all use bit oriented framing with flag = 01111110
• They all use a 16-bit CRC for error detection
• They all use Go Back N ARQ with N = 7 or 127 (optional)

SDLC packet
flag address control data CRC flag

Multipoint SN,RN
communication

•	 Older protocols (used for modems, e.g., xmodem) used stop and wait
and simple checksums

Eytan Modiano
33

Optimal packet size based on pipelining effect

Source destination

M links

• Packet must be completely received before being forwarded to next node
• Delay for sending N packets over M links (pipelining delay)

D = N*DTP + (M-1)*DTP

• Each packet contains K bits of data and a header of size H bits
– CRC, flags, SN’s, etc.
– Total packet size K+H bits

• In order to transmit a message of L bits we need L/K packets
• Time to transmit message over M links,

R = data rate D =
L K + H

+ (M − 1)

K + H

K

R R Eytan Modiano
34

Optimal packet size
Transmission
Delay

 + (M − 1)
K + H

R

Pipelining
delay

D =
L

K

K + H

R

•	 Small packets reduce the pipelining delay but increase the transmission
delay due to additional headers

• Large packets reduce header overhead but increase the pipelining delay

• Optimal packet size, Kopt =
LH

M − 1
• Approach may be appropriate for high-speed multi-hop networks

•	 Alternative approach may optimize the packet size to minimize link layer
retransmissions due to errors

– Large packet are more likely to contain transmission errors
Eytan Modiano

35

