Lectures 8 \& 9

M/G/1 Queues

Eytan Modiano
MIT

M/G/1 QUEUE

$\xrightarrow{\text { Poisson }} \underset{\text { M/G/1 }}{\text { Service times }}$ General independent

- Poisson arrivals at rate λ
- Service time has arbitrary distribution with given $E[X]$ and $E\left[X^{2}\right]$
- Service times are independent and identically distributed (IID)
- Independent of arrival times
- $\quad E[$ service time $]=1 / \mu$
- Single Server queue

Pollaczek-Khinchin (P-K) Formula

$$
W=\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}
$$

where $\rho=\lambda / \mu=\lambda E[X]=$ line utilization
From Little's formula,

$$
\begin{aligned}
& \mathbf{N}_{\mathbf{Q}}=\lambda \mathbf{W} \\
& \mathbf{T}=E[\mathrm{X}]+\mathbf{W} \\
& \mathbf{N}=\lambda T=\mathbf{N}_{\mathbf{Q}}+\rho
\end{aligned}
$$

M/G/1 EXAMPLES

- Example 1: M/M/1

$$
\begin{array}{r}
E[X]=1 / \mu ; E\left[X^{2}\right]=2 / \mu^{2} \\
W=\frac{\lambda}{\mu^{2}(1-\rho)}=\frac{\rho}{\mu(1-\rho)}
\end{array}
$$

Example 2: M/D/1 (Constant service time 1/ μ)

$$
E[X]=1 / \mu ; \quad E\left[X^{2}\right]=1 / \mu^{2}
$$

$$
W=\frac{\lambda}{2 \mu^{2}(1-\rho)}=\frac{\rho}{2 \mu(1-\rho)}
$$

Proof of Pollaczek-Khinchin

- Let $W_{i}=$ waiting time in queue of $i^{\text {th }}$ arrival $\mathrm{R}_{\mathrm{i}}=$ Residual service time seen by I (I.e., amount of time for current customer receiving service to be done)
$N_{i}=$ Number of customers found in queue by i

$$
\mathrm{W}_{\mathrm{i}}=\mathrm{R}_{\mathrm{i}}+\square_{\mathrm{j}=\mathrm{i}-\mathrm{N}_{\mathrm{i}}}^{\mathrm{i}-1} \mathrm{X}_{\mathrm{j}}
$$

- $E\left[W_{i}\right]=E\left[R_{i}\right]+E[X] E\left[N_{i}\right]=R+N_{Q} / \mu$
- Here we have used PASTA property plus independent service time property
- $\mathbf{W}=\mathbf{R}+\lambda \mathbf{W} / \mu=\mathbf{W}=\mathbf{R} /(1-\rho)$
- Using little's formula

What is R ?
 (Time Average Residual Service Time)

Let $M(t)=$ Number of customers served by time t $E[R(t)]=1 / t$ (sum of area in triangles)

$$
\mathbf{R}_{\mathrm{t}}=\frac{1}{\mathrm{t}} \int_{0}^{\mathrm{t}} \mathrm{R}(\tau) \mathrm{d} \tau=\frac{1}{\mathrm{t}} \square_{i=1}^{M(\mathrm{t})} \mathrm{X}_{\mathrm{i}}^{2}=\frac{1}{2} \frac{M(\mathrm{t})}{\mathrm{t}} \square_{i=1}^{M(\mathrm{t})} \frac{\mathrm{X}_{i}^{2}}{M(\mathrm{t})}
$$

As $\mathbf{t} \boldsymbol{\rightarrow}$ Infinity $\quad \frac{M(t)}{t}=$ average departure rate $=$ average arrival rate

$$
\frac{M(t)}{t} \square_{i=1}^{M(t)} \frac{x_{i}^{2}}{M(t)}=E\left[X^{2}\right] \quad \Rightarrow R=\lambda E\left[X^{2}\right] / 2
$$

M/G/1 Queue with Vacations

- Useful for polling and reservation systems (e.g., token rings)
- When the queue is empty, the server takes a vacation
- Vacation times are IID and independent of service times and arrival times
- If system is empty after a vacation, the server takes another vacation
- The only impact on the analysis is that a packet arriving to an empty system must wait for the end of the vacation

$$
E\left[W_{i}\right]=E\left[R_{i}\right]+E[X] E\left[N_{i}\right]=R+N_{Q} / \mu=R /(1-\rho)
$$

Average Residual Service Time (with vacations)

$$
\begin{aligned}
& \begin{array}{l}
\text { Residual Service } \\
\text { Time } \mathrm{R}(\mathrm{t}) \\
\mathrm{X}_{1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& R=\lim _{t \rightarrow \infty} \frac{E[M(t)]}{t} \frac{E\left[X^{2}\right]}{2}+\frac{L(t)}{t} \frac{E\left[V^{2}\right]}{2}
\end{aligned}
$$

- Where $L(t)$ is the number of vacations taken up to time t
- $\quad M(t)$ is the number of customers served by time t

Average Residual Service Time (with vacations)

- As $t->\infty, \quad M(t) / t->\lambda$ and $L(t) / t->\lambda_{v}=$ vacation rate
- Now, let I = 1 if system is on vacation and I = $\mathbf{0}$ if system is busy
- By Little's Theorem we have,
- $E[I]=E[\#$ vacations $]=P($ system idle $)=1-\rho=\lambda_{\mathrm{v}} \mathrm{E}[\mathrm{V}]$
- $\quad=>\lambda_{v}=(1-\rho) / E[V]$
- Hence,

$$
\mathrm{R}=\lambda \frac{\mathrm{E}\left[\mathrm{X}^{2}\right]}{2}+\frac{(1-\rho) \mathrm{E}\left[\mathrm{~V}^{2}\right]}{2 \mathrm{E}[\mathrm{~V}]}
$$

$$
W=\lambda \frac{E\left[X^{2}\right]}{2(1-\rho)}+\frac{E\left[V^{2}\right]}{2 E[V]}
$$

Example: Slotted M/D/1 system

Each slot $=$ one packet transmission time $=1 / \mu$

- Transmission can begin only at start of a slot
- If system is empty at the start of a slot, server not available for the duration of the slot (vacation)
- $E[X]=E[v]=1 / \mu$
- $E\left[X^{2}\right]=E\left[v^{2}\right]=1 / \mu^{2}$

$$
\begin{aligned}
& W=\frac{\lambda / \mu^{2}}{2(1-\lambda / \mu)}+\frac{1 / \mu^{2}}{2 / \mu}=\frac{\lambda / \mu}{2(\mu-\lambda)}+\frac{1 / \mu}{2} \\
& =W_{M / D / 1}+E[X] / 2
\end{aligned}
$$

- Notice that an average of $\mathbf{1 / 2}$ slot is spent waiting for the start of a slot

FDM EXAMPLE

- Assume m Poisson streams of fixed length packets of arrival rate λ / m each multiplexed by FDM on m subchannels. Total traffic $=\lambda$

Suppose it takes m time units to transmit a packet, so $\mu=1 / m$.
The total system load: $\rho=\lambda$
-

- We have an M/D/1 system $\{\mathrm{W}=\lambda \mathrm{E}[\mathrm{x} 2] / 2(1-\rho)\}$

$$
\mathbf{W}_{\text {FDM }}=\frac{(\lambda / m) m^{2}}{2(1-\rho)}=\frac{\rho m}{2(1-\rho)}
$$

Slotted FDM

- Suppose now that system is slotted and transmissions start only on m time unit boundaries.

- This is M/D/1 with vacations
- Server goes on vacation for m time units when there is nothing to transmit $\mathrm{E}[\mathrm{V}]=\mathrm{m} ; \mathrm{E}\left[\mathrm{V}^{2}\right]=\mathrm{m}^{2}$.

$$
\begin{aligned}
\mathrm{W}_{\mathrm{SFDM}} & =\mathrm{W}_{\mathrm{FDM}}+\mathrm{E}\left[\mathrm{~V}^{2}\right] / 2 \mathrm{E}[\mathrm{~V}] \\
& =\mathrm{W}_{\mathrm{FDM}}+\mathrm{m} / 2
\end{aligned}
$$

TDM EXAMPLE

TDM Frame				
slot \mathbf{m}	slot $\mathbf{1}$	slot $\mathbf{2}$	\cdots	slot \mathbf{m}

- TDM with one packet slots is the same (a session has to wait for its own slot boundary), so

$$
W=R /(1-\rho)
$$

$$
\mathrm{R}=\lambda=\frac{\mathrm{E}\left[\mathrm{X}^{2}\right]}{2}+\frac{\left(1-\rho \neq \mathrm{E}\left[\mathrm{~V}^{2}\right]\right.}{2 \mathrm{E}[\mathrm{~V}]}
$$

$$
W=\lambda=\frac{E\left[X^{2}\right]}{2\left(1-\rho_{\mathcal{F}}\right.}+\frac{E\left[V^{2}\right]}{2 E[V]}
$$

TDM EXAMPLE

- Therefore, $\mathrm{W}_{\text {TDM }}=\mathrm{W}_{\text {FDM }}+\mathrm{m} / \mathbf{2}$

Adding the packet transmission time, TDM comes out best because transmission time $=1$ instead of m .

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{FDM}} & =\left[\mathrm{W}_{\mathrm{FDM}}\right]+\mathrm{m} \\
\mathrm{~T}_{\mathrm{SFDM}} & =\left[\mathrm{W}_{\mathrm{FDM}}+\mathrm{m} / 2\right]+\mathrm{m} \\
\mathrm{~T}_{\mathrm{TDM}} & =\left[\mathrm{W}_{\mathrm{FDM}}+\mathrm{m} / 2\right]+1 \\
& =\mathrm{T}_{\mathrm{FDM}}-[\mathrm{m} / 2-1]
\end{array}
$$

